Cross-platform

Desktop Application
Development:

Electron, Node,
NW.js, and React

Build desktop applications with web technologies

Cross-platform Desktop
Application Development-
Electron, Node, NW.js, and
React

Build desktop applications with web technologies

Dmitry Sheiko

Packt

BIRMINGHAM - MUMBAI

Cross-platform Desktop Application
Development-Electron, Node, NW.js, and

React
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book. Packt Publishing has endeavored to provide trademark
information about all of the companies and products mentioned in this book by the
appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of
this information.

First published: July 2017

Production reference: 1260717

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78829-569-7

www.packtpub.com

Author
Dmitry Sheiko

Reviewer
Dobrin Ganev

Commissioning Editor
Smeet Thakkar

Acquisition Editor
Shweta Pant

Content Development Editor
Roshan Kumar

Technical Editor
Akhil Nair

Credits

Copy Editors
Dhanya Baburaj
Shaila Kusanale
Akshata Lobo

Project Coordinator
Devanshi Doshi

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Jason Monteiro

Production Coordinator
Shraddha Falebhai

About the Author

Dmitry Sheiko is a web developer, blogger, and open source contributor, living and
working in the lovely city of Frankfurt am Main, Germany.

Dmitry got hooked on computer programming in late 80s. Since 1998, he has been in web-
development. Over the last few years, Dmitry has been creating desktop applications with
NW js/Electron. The very first solutions were made with JavaScript/Backbone, but then he
switched to TypeScript/React/Redux.

Dmitry has authored dozens of projects at GitHub, including: nw-autoupdater, Pragmatic
CSS, and a Common]S compiler.

First, I would like to thank my family for their continuous support and for allowing me to
realize my own potential. A special thanks to my father who first took me to an industrial
computer center when I was about 3 years old. In a decade, with the advance of PCs, I
realized that computers mean games and after a while, became curious enough about how
the games were built to start learning programming.

Thanks to Crytek for giving me the opportunity to pursue my passion for research and
development.

About the Reviewer

Dobrin Ganev is a Calgary-based software developer with years of experience in various
domains, from large-scale distributed applications to frontend web development with the
latest JavaScript frameworks. In recent years, he has been focusing on architecting and
prototyping solutions in various subjects, such as enterprise search, GIS, predictive
analytics, and real-time distributed systems.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub. com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

» Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1788295692.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

This book is gratefully dedicated to my beloved wife Olga and son Jan.
My dears, you were both so supportive and patient throughout my time of writing.
You helped me bring this book to life..

Table of Contents

Preface 1
Chapter 1: Creating a File Explorer with NW.js-Planning, Designing, and
Development 7
The application blueprint 7
Setting up an NW.js project 9
Node Package Manager 10
An HTML prototype 18
Maintainable CSS 18
Defining base rules 20
Defining layouts 21
Defining CSS variables 25
Sticking the title bar and header 28
Styling the title bar 30
Styling the directory list 31
Styling a file list 33
Styling the footer 36
Fulfilling the functional requirements 40
Starting with ES2015 41
Scoping 42
Classes 43
The template literal 44
Getters and setters 44
Arrow functions 45
Destructuring 45
Handling windowing actions 46
Writing a service to navigate through directories 49
Unit-testing a service 52
Writing view modules 57
The DirList module 57
Unit-testing a view module 59
The FileList module 60
The title bar path module 61

Summary 62

Chapter 2: Creating a File Explorer with NW.js — Enhancement and

Delivery 64
Internationalization and localization 64
Date format by country 65
Multilingual support 69
Context menu 73
System clipboard 79
Transferring text 79
Transferring graphics 80
Receiving text and graphics 81
Menu in the system tray 83
Command-line options 90
Native look and feel 91
Source code protection 93
Packaging 95
Autoupdate 96
Summary 102
Chapter 3: Creating a Chat System with Electron and React — Planning,
Designing, and Development 103
Application blueprint 103
Electron 105
React 109
Electron meets React 113
Enabling DevTools extensions 118
Static prototype 119
Summary 127
Chapter 4: Creating a Chat System with Electron and React —
Enhancement, Testing, and Delivery 128
Revitalizing the title bar 128
Utilizing WebSockets 131
Implementing chat services 135
Bringing functionality to the components 141
Writing unit-tests 150
Packaging and distribution 155
Deployment and updates 157

Summary 163

[ii]

Chapter 5: Creating a Screen Capturer with NW.js, React, and Redux —

Planning, Design, and Development 164
Application blueprint 164
Setting up the development environment 166
Static prototype 169
Comprehending redux 176
Introducing the application state 180
Summary 190

Chapter 6: Creating a Screen Capturer with NW.js: Enhancement,

Tooling, and Testing 191
Tooling Redux 191
Redux DevTools 194
Unit-testing Redux 196

Testing action creator 196

Testing reducers 197
Taking a screenshot 199
Recording a screencast 204
Taking advantage of the system tray 208
Registering global keyboard shortcuts 212
Summary 215

Chapter 7: Creating RSS Aggregator with Electron, TypeScript , React,

and Redux: Planning, Design, and Development 216
Application blueprint 216
Welcome to TypeScript 218
Setting up the development environment for TypeScript 219

Basic types 220
Array, plain objects, and indexable types 221
Function type 223
Class type 224
Abstract classes 226
Enum type 226
Union and intersection types 227
Generic type 228
Global libraries 229
Creating static prototype 230
Setting up the development environment for the application 231
React-MDL 234
Creating the index.html 235

[iii]

Creating the container component 236

Creating the TitleBar component 237

Creating the Menu component 238

Creating the feed component 239

Adding custom styles with SASS 240

Summary 243
Chapter 8: Creating RSS Aggregator with Electron, TypeScript, React,

and Redux: Development 245

Creating a service to fetch RSS 245

Creating a service to manage feed menu 249

Actions and Reducers 252

Connecting to the store 261

Consuming store from the components 264

Creating router service 272

Summary 273

Index

275

[iv]

Preface

HTMLS5 desktop application development is gaining momentum, and it s no wonder if you
take into consideration that JavaScript is now the most popular programming language on
the web. The set of HTMLS5 features combined with Node.js and the runtime API is
impressively rich, to say nothing of the countless Node.js modules available on GitHub. In
addition, HTML5 desktop applications can be distributed across different platforms
(Window, macOS, and Linux) without any modifications in the code.

The goal of this book is to help the reader discover what exciting opportunities unlock
Node.js-driven runtime (NW.js and Electron) to a JavaScript developer and how
surprisingly easy it is to catch up on programming specifics in this area.

What this book covers

Chapter 1, Creating a File Explorer with NW.js - Planning, Designing, and Development, shows
that development starts with the blueprint of the file explorer application. We set up a
development environment for NW.js and get a crash course on npm, which we will use to
install any additional software, and build and run applications. We develop a static
prototype of the application. On the way, we learn the best practices for writing
maintainable CSS and get a brief introduction to ES2015.

Chapter 2, Creating a File Explorer with NW.js - Enhancement and Delivery, covers the
extension and finalization of the application. For that, we master desktop environment
integration APIs such as the clipboard, context menu, and tray. We provide file explorer
with support for multiple languages and locales. We make it respond to command-line
options. We examine pre-production aspects such as code protection, packaging, and
autoupdate.

Chapter 3, Creating a Chat System with Electron and React - Planning, Designing, and
Development, teaches us how to develop a chat system with Electron and React so, we get an
introduction to both of them. We configure the Webpack bundler to transpile React
components with JSX syntax. In addition, we make it process CSS files requested as
modules. Thus, we can load the assets of the Electron-dedicated library Photonkit. We add
the DevTool React extension in Electron and come up with a static prototype at the end of
the chapter.

Preface

Chapter 4, Creating a Chat System with Electron and React - Enhancement, Testing, and Delivery,
covers bringing the application to life. We use the Electron API and React state to
implement windowing functions. We learn to use the WebSocket API to provide the chat
with bidirectional communication. We examine the unit testing of views and services, and
explore Electron-specific packaging, distribution, and autoupdates.

Chapter 5, Creating a Screen Capturer with NW.js, React, and Redux - Planning, Design, and
Development, explains how to build a screen capturer based on global application state
driven by Redux. In development, we use ready-made React components from the Material
Ul library. At the end of the chapter, we have a static prototype.

Chapter 6, Creating a Screen Capturer with NW.js - Enhancement, Tooling, and Testing, outlines
how to make the application take screenshots and record screencasts. We learn to use
WebRTC APIs to get the video stream. We make it generate a still frame image for
screenshots and capture the video stream in a file for screencasts. We use the Notification
API to inform the user about actions performed, regardless of what window is in focus. We
make capturing actions available via global keyboard shortcuts.

Chapter 7, Creating RSS Aggregator with Electron, TypeScript , React, and Redux - Planning,
Design, and Development, prepares us to develop a RSS aggregator. For that application, we
take advantage of static typing with TypeScript and so, learn the essentials of programming
languages. We build a static prototype with the React components of the React MDL library.

Chapter 8, Creating RSS Aggregator with Electron, TypeScript, React, and Redux - Development,
explores how to develop the application. On the way, we will learn to use asynchronous
actions, and access the store from React components and from services. We will also
examine the peculiarities of rendering guest content in Electron.

What you need for this book

To build and run the examples in this book, you need either Linux or macOS; you will also
need npm/Node.js. At the time of writing, the author tested the examples with the
following software:

e npm v.5.2.0
e nodev.8.1.1
e Ubuntu 16.04 LTS, Windows 10, and macOS Sierra 10.12

[2]

Preface

Who this book is for

This book has been written for any developers interested in creating desktop applications
with HTMLS5. The first two chapters require essential web-master skills (HTML, CSS, and
JavaScript) and the basics of Node.js. This part of the book includes a crash course on npm,
which will be used across the book to build and run examples, given that you have
experience with the command line in your OS (Linux, macOS, or Windows). The next four
chapters welcome a minimal experience with React. And finally, for the last two chapters, it
would be helpful to have a basic knowledge of TypeScript.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: "Well, we
can change the locale and trigger the event. What about consuming modules?

In the FileList view, we have the formatTime static method that formats the passed-in
timeString for printing. We can make format it in accordance with the currently chosen
locale."

A block of code is set as follows:

{

"name": "file-explorer",

"version": "1.0.0",

"description": "",

"main": "main.js",

"scripts": {

"test": "echo "Error: no test specified" && exit 1"
by

"keywords": [],

"author": "",

"license": "ISC"

}
Any command-line input or output is written as follows:

sudo npm install nw —--global

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "The menu Show Item
contains Folder, Copy, Paste, and Delete."

[3]

Preface

0 Warnings or important notes appear in a box like this.
8 Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book--what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http://www.p
acktpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.c
om/supportand register to have the files e-mailed directly to you. You can download the
code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.

AN .

[4]

Preface

6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR /7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPubl
ishing/Cross-platform-Desktop-Application-Development-Electron-Node-NW.js-an

d-react. We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.

You can download this file from https://www.packtpub.com/sites/default/files/down
loads/CrossplatformDesktopApplicationDevelopmentElectronNodeNWJSandReact_Col

orImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website or added to any list of existing errata under the Errata
section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/conten
t/supportand enter the name of the book in the search field. The required information will
appear under the Errata section.

[5]

Preface

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[6]

Creating a File Explorer with
NW.js-Planning, Designing, and
Development

Nowadays, when speaking of HTML5 desktop application development, one implies either
NW.js or Electron. The first one has a shorter learning curve, which makes it a better choice
for the beginning. Our first application will be a File Explorer. This sort of software is
traditionally considered as a classical desktop application. I believe that you will find it
exciting to build a File Explorer with HTML, CSS, and JavaScript. This chapter requires no
skills in JavaScript frameworks, as we will use none. All you need is a basic knowledge of
HTML, CSS, and plain JavaScript (including Node.js).

So, what are we up to? We will plan and sketch the project. We will set up the development
environment and create a static prototype and run it with NW.js. We will implement the
basic functionality, making it ready to be enhanced in chapter 2, Creating a File Explorer
with NW.js—Enhancement and Delivery.

The application blueprint

By File Explorer, I mean a small program that allows navigating through the filesystem and
performs basic operations on the files, which can be expressed with the following user
stories:

e As a user, I can see the content of the current directory
e As a user, I can navigate through the filesystem
e As auser, I can open a file in the default associated program

Creating a File Explorer with NW.js-Planning, Designing, and Development

As a user, I can delete a file

As a user, I can copy a file in the clipboard and paste it later in a new location

As a user, I can open the folder containing the file with the system file manager

As a user, I can close the application window

As a user, I can minimize the application window

As a user, I can maximize and restore the application window

As a user, I can change the application language

It would be easier to perceive it in a visual form, wouldn't it? Wireframes come in handy
here. Wireframe is a skeletal framework of the application that depicts the arrangement of
the application's content, including UI elements and navigation system. Wireframe has no
real graphics, typography, or even colors. It shows schematically, what the application
does. As you know, drawing with a pencil on a paper is possible, but it is not the best way
to create a wireframe; what we need is a prototyping tool. Today, there are plenty of
solutions on the market. Here, I use an impressive, but affordable tool called
WireframeSketcher (http://wireframesketcher.com/). It allows you to sketch web,
desktop, and mobile applications (just what we need). It also has a rich mock-up gallery of
stencils, widgets, icons, and templates that makes prototyping fast and easy. Besides, the
wireframes look nice in a sketchy style:

/home/ _Ox
Name Size Modified
assets app.htmi 1.07 KB 2/3/2017 11:37:03
is package.json 384 B Show Item in the Folder
Copy
Delete

File Explorer

[8]

Creating a File Explorer with NW.js-Planning, Designing, and Development

What we can see on the wireframe is often called a Holy Grail Layout. In our case, the
header serves as the window title bar. There, we keep our controls for window actions such
as close, maximize, and minimize. Besides that, in the title bar, we display the path to the
current directory. In the sidebar, we have our filesystem navigation. The main section
contains a table that represents files of the current directory. It has columns--Name, Size,
and Modified. A right-click on a file opens a context menu with available file operations.
The footer comprises the application title and a language selector combo box.

Setting up an NW.js project

NW.js is an open source framework for building HTML, CSS, and JavaScript applications.
You can also see it as a headless browser (based on Chromium
https://www.chromium.org/) that includes Node.js runtime and provides desktop
environment integration API. Actually, the framework is very easy to start with. What we
need is just a start page HTML file and project manifest file (package . json).

Node.js

HTML
Css

JavaScript

To see it in action, we will create a project folder named file-explorer at an arbitrary
location. The choice of the folder location is up to you, but I personally prefer to keep web
projects in /<username>/Sites on Linux/macOS and $USERPROFILE%Sites on
Windows.

As we enter the directory, we create placeholder folders for JavaScript and CSS sources (js
and assets/css):

:file-explorer]$ tree .

[
index.html

[9]

Creating a File Explorer with NW.js-Planning, Designing, and Development

We also place a start page HTML (index.html) that consists of just a few lines:

./index.html
<!DOCTYPE html>
<html>
<body>
<hl>File Explorer</hi1>
</body>
</html>

As you can guess, we shall see just this text--File Explorer-- when feeding this file to a
browser.

Now, we need the Node.js manifest file (package . json). Node.js, embedded in the
framework, will use it to resolve dependency package names when called with a require
function or from an npm script. In addition, NW.js takes from it the project configuration
data.

Why not create the manifest file and populate it with dependencies using the npm tool?

Node Package Manager

Nowadays, Node Package Manager (npm) is one of the most demanded gadgets in the web
developer tool belt. It's a command-line utility connected with the corresponding online
repository of packages and is capable of package installation, version management, and
dependency management. So, when we need a package (library, framework, and module),
we will check whether it's available in the npm repository and run npm to bring it into our
project. It not only downloads the package, it also resolves its dependencies and does it
pretty smartly. Furthermore, npm is pretty handy as an automation tool. We can set various
command-line tasks to refer any of the locally installed packages by name. The npm tool
will find the executable package among installed packages and run it.

The npm tool is distributed together with Node.js. So, you can find an installer for Windows
or for macOS on the Node.js download page (https://nodejs.org/en/download). It is also
available as an APT package, so you can install it for Linux with the apt -get tools:

sudo apt—get install npm

If you have already installed npm, ensure that it's up to date:

sudo npm install npm@latest -g

[10]

Creating a File Explorer with NW.js-Planning, Designing, and Development

As I have already said, we can install packages with npm-- for example, NW js. If we want
to do it globally, we will run the following command:

sudo npm install nw —--global

Alternatively, we can run the following command:
sudo npm i nw —g

This will download the latest build of NW.jsin {prefix}/lib/node_modules/ and place
the executable file in {prefix}/bin. It adds the binary to the PATH environment variable,
so one can call nw in any location in the shell.

{prefix} In order to find out what {prefix} is one can run:
npm config get prefix.On Linux/macOS it will be /usr/local.On
Windows $APPDATA%npm

This way, we will have a single instance of NW.js across the system, but what if an
application requires a specific version of NW.js? Luckily, with npm, we can also install a
package locally, and therefore, rely on a particular version that addresses our application. In
addition, we can manage local dependencies in the package. json file. With a single
command, npm can install/update all the dependencies enlisted there at once.

Let's take a look at how it works on our project. We go to the project root (the file-
explorer folder) and run the following command:

npm init -y
It produces a package. json file with the following content:

{

"name": "file-explorer",
"version": "1.0.0",
"description": "",
"main": "main.js",
"scripts": {
"test": "echo "Error: no test specified" && exit 1"
}I
"keywords": [],
"author": "",
"license": "ISC"

[11]

Creating a File Explorer with NW.js-Planning, Designing, and Development

Here, in the name field, we set our application name. Beware that NW.js will use the
provided value to name the directory in a system-dependent path for the project persistent
data (nw.App.dataPath). So, it shall be a unique, lowercase alpha-numeric, but may
include a few special symbols, such as ., _, and -.

Field version expects the application version as a string, conforming to the Semantic
Versioning standard (http://semver.org/). What it all boils down to is a composite
product version out of three numbers separated with dots. The first number (MAJOR)
increments when we make incompatible API changes, the second number (MINOR)
increases when we introduce a new functionality, and the last one (PATCH) identifies bug
fixes.

In the main field, we let NW.js know where to find our start page HTML. We have to edit

the manifest to change its value with index.html:
./package. json

{
"main": "index.html",
}

The field scripts accepts a key value object with automation scripts for the project. By
default, it has a placeholder for tests. Now, run the following command:

npm run test

The Shell responds with an error message saying no test specified, as we have no test yet.
However, we will need a script to start the application. So, we edit package . json again
and add to scripts field the following lines:

package. json
{

"scripts": {

"start": "nw .",
"test": "echo "Error: no test specified" && exit 1"

b

}

Now, we can type npm run start or npm start to run NW.js on the project root, but we
do not have the framework installed, yet. We are just about to bring it in.

[12]

Creating a File Explorer with NW.js-Planning, Designing, and Development

Manifest fields--such as description/keywords and author--help other
people to discover the application as a package. The 1icense field tells
people how they are permitted to use the package. You can find more
about these fields and other possible options at
https://docs.npmjs.com/files/package. json

Before telling npm to install the framework, we note that the standard version of NW.js
doesn't include DevTools, which we definitely will need for development. So, we look for a
specific version, the so-called SDK flavor. To find out the package versions that are
available for the NW.JS package (nw), we run the following command:

npm view nw dist-tags
Alternatively, we can run the following command:
npm v nw dist-tags
This receives the following output:
{
latest: '0.20.3',
alphasdk: '0.13.0-alphadsdk’,
alphaS5sdk: '0.13.0-alphabsdk’,
alphaé6sdk: '0.13.0-alphaé6sdk’,

alpha7sdk: '0.13.0-alpha7sdk’,
sdk: '0.20.3-sdk’

}

From this payload, we can assume that the latest version at the time of writing is 0.20.3
and that it is accompanied with 0.20.3-sdk. So, we can install the framework, as follows:

npm install nw@0.20.3-sdk —--save-dev
Alternatively,we can install it, as follows:
npm i nw@0.20.3-sdk -D

Actually, since we know that the package has a dist-tag called sdk, we can also do it as
follows:

npm i nw@sdk -D

Just after running any of these commands, we can find a new subdirectory named
node_modules. There, npm installs local dependencies.

[13]

Creating a File Explorer with NW.js-Planning, Designing, and Development

Have you noticed that we applied the --save-dev (-D) option? This way, we requested
npm to save the package in our development dependency list. Observe that package. json
is changed:

{

"name": "file-explorer",
"version": "1.0.0",
"description": "",
"main": "index.html",
"scripts": {
"start": "nw .",
"test": "echo "Error: no test specified" && exit 1"
}I
"keywords": [],
"author": "",
"license": "ISC",
"devDependencies": {

"nw": "~0.20.3-sdk"

}
}

We installed the package as a development dependency because this SDK version is meant
only for development. In chapter 2, Creating a File Explorer with NW.js—Enhancement and
Delivery we will examine the distribution and packaging techniques. So, you will see how
we can bundle the application with a platform-specific NW.js production build.

Since we have reflected our dependency in the manifest file, we can update this and any
further packages any time by running the following command:

npm update

If we lose node_modules(for example after cloning the project from remote GIT repository
given the dependency folder is usually in the ignore list), we can install all the
dependencies through the following command:

npm i

Have you noticed? In the package . json, we assigned nw package with version in, so
called, caret range ~0.20.3-sdk. That means during the install/update process, npm will
accept new versions with patch and minor updates, but no major versions.

[14]

Creating a File Explorer with NW.js-Planning, Designing, and Development

The following are some useful npm commands:

npm i pkg-name: Installs the latest available version of a package

npm i pkg-name@version:Installs a concrete version of the package
npm i pkg-name -S:Installs package as a dependency and saves it in
package.json

npm i pkg-name -D:Installs package as a development dependency and
save in package. json

npm i:Installs all the dependencies (including development ones) enlisted
in package. json

npm i --production: Installs dependencies but not development ones
npm list:Shows all the installed dependencies

npm uninstall nw --save:uninstalls a package and removes it from
npm un nw -S:shorter syntax

package.json

At this point, we have the framework instance and package. json pointing to
index.html. So, we can run the only script we have defined in the manifest file so far:

npm start

First, run it on NW.JS in Ubuntu:

- File-explorer

File Explorer

[15]

Creating a File Explorer with NW.js-Planning, Designing, and Development

Then, run it on NW.JS in windows:

@ flile-explorer - m] x

File Explorer

Finally, we run it in macOS:

@ ® file-explorer

File Explorer

NW js created a window and rendered index.html in it. It took the default Window
parameters. If we want to customize them, we will need to edit package. json.

[16]

Creating a File Explorer with NW.js-Planning, Designing, and Development

First, we will add the window field that accepts an object with the following properties:

e window.icon: This specifies a relative path to the window icon.

¢ window.show: This indicates whether the window is visible when the application
starts or not. For instance, you can set it to false in the manifest and then change it
programmatically with JavaScript (nw.Window.get () . show (true)).

e window. frame: This makes the window frameless when set to false.

e window.width / window.height: This sets the window default size in pixels.

e window.min_width / window.min_height: This sets a minimal acceptable
size to the window.

¢ window.position: This specifies where the window shall be placed. The value
can be null, center, or mouse.

® window.resizable: When set to true, this property makes the window
resizable.

We will also use the chromium-args field to specify the command-line arguments that we
want to pass to chromium. Here, we set it to ——mixed-context to switch NW.js into the
corresponding mode. So, we could access the browser and the NW.js API directly from
Node.js modules. NW js introduces Node.js context in addition to the browser context and
keep them separate. After extending it with NWJS meta-data the manifest looks as follows:
. /package. json

{

"chromium-args": "--mixed-context",
"window": {

"show": true,

"frame": true,

"width": 1000,

"height": 600,

"min_width": 800,

"min_height": 400,

"position": "center",

"resizable": true

}

These are just a few preferences set for our simple application. All the available options can
be found at https://github.com/nwjs/nw.js/wiki/manifest-format.

[17]

Creating a File Explorer with NW.js-Planning, Designing, and Development

An HTML prototype

We've just reached the point where we can start templating our application. Using HTML
and CSS, we will achieve the intended look and feel. Later, we will bind JavaScript modules
to the acting elements.

We start by replacing the content of index.html with the following code:
./index.html

<!DOCTYPE html>
<html>
<head>
<title>File Explorer</title>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<link href="./assets/css/app.css" rel="stylesheet" type="text/css">
</head>
<body class="l-app">
<header class="l-app__titlebar titlebar">
</header>
<div class="l-app__main l-main">
<aside class="l-main_ dir-list dir-list">
</aside>
<main class="l-main_ file-1list file-1list">
</main>
</div>
<footer class="l-app_footer footer">
</footer>
</body>
</html>

Here, we just defined the page layout with semantically meaningful HTML tags. As you can
see, we refer to . /assets/css/app.css that we are about to create.

Maintainable CSS

Before we start styling, I would like to talk briefly about the importance of maintainability
in CSS. Despite the fact that CSS is a declarative language, it requires no less diligence than
any other code in general. When browsing a public repository, such as GitHub, you can still
find plenty of projects where all the styles are put in a single file that is full of code smells (h
ttps://csswizardry.com/ZO12/11/codefsmellsfinfcss/)andllaer)Conskﬁencyiniﬂass
naming.

[18]

Creating a File Explorer with NW.js-Planning, Designing, and Development

Well, it will not be much of a problem at the beginning, but CSS as any other code tends to
grow. Eventually, you will end up with thousands of lines of rotting code often written by
different people.

Then, you have to fix the Ul element appearance, but you realize that dozens of existing
CSS declarations across the cascade impact this element. You change one, and styles break
unpredictably on other elements. So, you will likely decide to add your own rules
overriding existing styles. After that, you may find out that some of the existing rules have
a higher specificity, and you will have to use brute force through the cascade; every time it
is going to be worse.

To avoid this maintainability problem, we have to break the entire application Ul into
components and design the CSS code so as to keep them reusable, portable, and conflict
free; the following heuristics may come in handy:

¢ Split the whole CSS code into modules that represent components, layouts, and
states

e Always use classes for styling (not IDs or attributes)
¢ Avoid qualified selectors (selectors with tags such as nav, ul, 11, and h2)

¢ Avoid location dependency (long selectors such as . foo, .bar, .baz, and
article)

¢ Keep selectors short
e Donot use ! important reactively

There are different methodologies that help to improve CSS maintainability. Probably, the
most popular approach is Blocks Elements Modifiers (BEM). It introduces a surprisingly
Shn;ﬂe,butpOVWﬂfulConcept(https://en.bem.info/methodology/key—concepts/)It
describes a pattern for class names that encourages readability and portability. I believe that
the best way to explain it is by an example. Let's say we have a component representing a
blog post:

<article class="post">

<h2 class="post__title">Star Wars: The Last Jedi's red font is a

cause for concern/h2>

<time datetime="2017-01-23 06:00" class="post__time">Jan 23, 2017</time>
</article>

In BEM terminology, this markup represents a block that we can define with a class name
post. The block has two elements--post__title and post_time. Elements are integral
parts of a block; you cannot use them out of the parent block context.

[19]

Creating a File Explorer with NW.js-Planning, Designing, and Development

Now imagine that we have to highlight one post of the list. So, we add a post--sponsored
modifier to the block's classes:

<article class="post post--sponsored">

</article>
At first, class names containing double dashes and underscores may make you dizzy, but
after a while you will get used to it. The BEM naming convention helps developers

remarkably by showing indention. So when reading your own or somebody else's code, you
can quickly figure out by its name what the purpose of a class is.

In addition to the BEM naming convention, we will use a few ideas from the Pragmatic CSS
styleguide (https://github.com/dsheiko/pcss). We will give names prefixed with is-
and has- to the classes representing global states (for example, is-hidden and has-
error); we will prefix layout-related classes with 1- (for example, 1-app). Finally, we will
amalgamate all CSS files in two folders (Component and Base).

Defining base rules

Firstly, we will create a Base directory and place the reset styles in there:
./assets/css/Base/base.css

html {
-webkit-font-smoothing: antialiased;

}

* A
box-sizing: border-box;

}

nav > ul {
list-style: none;
padding: 0;
margin: O;

}

body {
min-height: 100vh;
margin: O;
font-family: Arial;
}

.is-hidden {

[20]

Creating a File Explorer with NW.js-Planning, Designing, and Development

display: none !important;

}
For HTML scope, we will enable font smoothing for better font rendering.

Then, we will set box sizing of every element (*) in border-box. The default CSS box
model is content-box, where width and height set to an element do not include padding
and border. However, if we are setting, let's say, a sidebar width 250px, I would expect it to
cover this length. With border-box, the box's size is always exactly what we set it,
regardless of padding or border, but if you ask me, the border-box mode feels more
natural.

We will reset indents and markers--for an unordered list--that are used for navigation (nav
> ul). We make body element span the height of the entire viewport (min-height:
100vh), remove the default margin, and define the font family.

We will also introduce a global state is-hidden that can be applied on any element to
remove it from the page flow. By the way, that is a good example of proactive and,
therefore, permissible use of ! important. By adding an is-hidden class (with JavaScript),
we state that we want the element to hide, with no exceptions. Thus, we will never run into
a specificity problem.

Defining layouts

That's enough for base styles; now, we will start on the layout. First, we will arrange the
title bar, main section, and footer:

Titlebar

Main

Footer

[21]

Creating a File Explorer with NW.js-Planning, Designing, and Development

To achieve this design, we should preferably use Flexbox. If you are not familiar with this
layout mode, I will recommend the article, Understanding Flexbox: Everything you need to
know (http://bit.ly/2m3zmc1). It provides probably the most clear and easy-to-catch-up
way of explaining what a Flexbox is, what options are available, and how to use them
efficiently.

So, we can define the application layout like that:
./assets/css/Component/l-app.css

.l-app {
display: flex;
flex-flow: column nowrap;
align-items: stretch;

}

.l-app__titlebar {
flex: 0 0 40px;
}

.l-app__main {
flex: 1 1 auto;
}

.l-app__footer {
flex: 0 0 40px;
}

We make . 1-app a flex container that arranges inner items along a cross axis, vertically
(flex-flow: column nowrap).In addition, we request the flex items to fill in the full
height of the container (align-items: stretch). We set the title bar and footer to a fixed
height always (flex: 0 0 40px). However, the main section may shrink and grow
depending on the viewport size (flex: 1 1 auto).

Since we have an application layout, let's define the inner layout for the main section:

A
v

Dir-List File-List

[22]

Creating a File Explorer with NW.js-Planning, Designing, and Development

What we need to do is to make items--dir-1ist and file-1ist--to arrange horizontally
one after another:

./assets/css/Component/l-main.css

.1l-main {
display: flex;
flex—-flow: row nowrap;
align-items: stretch;

.l-main__dir-list {
flex: 0 0 250px;

.1l-main__ file-1list {
flex: 1 1 auto;
}

In the preceding code, we set the flex items to line up along an main axis horizontally using
flex—flow: row nowrap. The 1-main_ dir-1list item has a fixed width and its width
depends on the viewport.

Actually, it's hard to see any results of our work until we give the components some colors:
./assets/css/Component/titlebar.css

.titlebar {
background-color: #2d2d2d;
color: #dcdcdc;
padding: 0.8em 0.6em;

}

We also colorise the footer component:
./assets/css/Component/footer.css

.footer {
border-top: 1px solid #2d2d2d;
background-color: #dedede;
padding: 0.4em 0.6em;

t

[23]

Creating a File Explorer with NW.js-Planning, Designing, and Development

and the file-1ist component:
./assets/css/Component/file-list.css

.file-1list {
background-color: #f9f9f9;
color: #333341;

}

and eventually the dir-1ist component:
./assets/css/Component/dir-list.css
.dir-list {
background-color: #dedede;
color: #ffffff;

border-right: 1px solid #2d2d2d;
}

Now, we only need to include all the modules in the index file:
./assets/css/app.css:

"./Base/base.css");

@import url("./Component/l-app.css");

@import url("./Component/titlebar.css");

@import url (
(
(
@import url("./Component/footer.css");
(
(

@import url("./Component/dir-list.css");
@import url("./Component/file-list.css");

As it's done, we launch the application using the following command:

npm start

[24]

Creating a File Explorer with NW.js-Planning, Designing, and Development

It launches the application and shows the layout:

o Flle Explorer

For font sizes and related parameters such as padding, we use relative units
(em). It means that we set these values relative to the parent font size:

.component { font-size: 10px; } .component__part { font-
size: 1.6em; /* computed font-size is 10*1.6=1l6px */ }

This trick allows us to efficiently scale components. For example, when using
the Responsive Web Design (RWD) approach, we may need to reduce the
font sizes and spacing proportionally for a smaller viewport width. When
using ems, we just change font size for a target component, and values of
subordinated rules will adapt.

Defining CSS variables

NW. js releases quite frequently, basically updating with every new version of Chromium.
That means we can safely use the latest CSS features. The one I'm most excited about is
called Custom Properties (https://www.w3.0rg/TR/css-variables), which were formerly
known as CSS variables.

[25]

Creating a File Explorer with NW.js-Planning, Designing, and Development

Actually, variables are one of the main reasons CSS preprocessors exist. With NW.js, we can
set variables natively in CSS, as follows:

——color-text: #8da3c5;
——color-primary: #189%ac4;

After that, we can use the variable instead of real values across all the modules in the
document scope:

.post__title {

color: var (--color-primary);
}
.post__content {

color: var (—--color-text);

}

So if we decide now to change one of defined colors, we need to do it once, and any rules
relying on the variable receives the new value. Let's adopt this technology for our
application.

First, we need to create definitions for the module:
./assets/css/Base/defenitions.css

:root {
——titlebar-bg-color: #2d2d2d;
——titlebar-fg-color: #dcdcdc;
——dirlist-bg-color: f#dedede;
——dirlist-fg-color: #636363;
——filelist-bg-color: #f9f9f9;
——filelist-fg-color: #333341;
——-dirlist-w: 250px;
—-—titlebar-h: 40px;
—-—footer-h: 40px;
—--footer-bg-color: #dedede;
—--separator—-color: #2d2d2d;

}

Here, we define variables representing colors and fixed sizes in the root scope. This new file
gets included to the CSS index file:

./assets/css/app.css:

@import url("./Base/defenitions.css");

[26]

Creating a File Explorer with NW.js-Planning, Designing, and Development

Then, we have to modify our components. First we take care of the top level application
layout:

./assets/css/Component/l-app.css

.l-app {
display: flex;
flex-flow: column nowrap;
align-items: stretch;

.l-app__titlebar {
flex: 0 0 var(--titlebar-h);

.l-app__main {
flex: 1 1 auto;

.l-app_footer {
flex: 0 0 var (-—-footer-h);
t

Then we layout the main section that consists of two columns with dir and file lists:
./assets/css/Component/l-main.css
.l-main {
display: flex;

flex—flow: row nowrap;
align-items: stretch;

.l-main_ dir-list {
flex: 0 0 var(--dirlist-w);

.l-main__ file-1list {
flex: 1 1 auto;

[27]

Creating a File Explorer with NW.js-Planning, Designing, and Development

We style the header:
./assets/css/Component/titlebar.css

.titlebar {
background-color: var (--titlebar-bg-color);
color: var(--titlebar-fg-color);
padding: 0.8em 0.6em;

}

And the footer:

./assets/css/Component/footer.css

.footer {
border-top: 1lpx solid var (--separator-color);
background-color: var (-—footer-bg-color);

padding: 0O.4em 0.6em;
}

We also need to set colors for the child components of the main section. So style the file list
component:

./assets/css/Component/file-list.css

.file-1ist {
background-color: var (——filelist-bg-color);
color: var(——filelist-fg-color);

t
and directory list component:
./assets/css/Component/dir-list.css
.dir-list {
background-color: var (-—-dirlist-bg-color);
color: var(--dirlist-fg-color);

border-right: 1lpx solid var (-—-separator-color);

}

We can run the application to observe that it looks the same. All the colors and sizes are
successfully extrapolated from the variables.

Sticking the title bar and header

The layout looks fine without any content, but what happens to the layout if it receives
content that is too long?

[28]

Creating a File Explorer with NW.js-Planning, Designing, and Development

File Explorer

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque laoreet varius purus, ut pharetra odio
interdum et. Nam non turpis orcl. Proin rhoncus, turpls a cursus lacinia, lectus lorem rhoncus turpis, a
lcursus nibh ante nec dolor. Phasellus vitae viverra nulla. Aenean cursus convallis nisl, eget placerat
purus imperdiet quis. Suspendisse sagittis lacinia arcu, a bibendum purus. Cras volutpat rutrum
maximus.

ICurabitur mattis pretium mollis. Fusce vel metus orci. Nullam tincidunt libero consequat tellus viverra,
leu dapibus metus posuere. Maecenas massa risus, sollicitudin eget vestibulum ac, ultrices et sem.
Phasellus nec porttitor magna. Nullam egestas nunc eget ex tincidunt eleifend. Nulla tristique lorem
vitae faucibus maximus. Sed in nulla quis nibh posuere facilisis. Integer id suscipit metus, commodo
tincidunt nisl.

Ut pharetra velit in magna condimentum volutpat vel posuere ipsum. Quisque eget odio tristique,
lcondimentum ipsum ut, accumsan felis. Morbi malesuada velit eget nisi auctor ultrices. Ut placerat
lsodales odio ullamcorper tempus. Suspendisse ac condimentum lectus, nec pellentesque turpis. Cras
imperdiet varius fermentum. Mauris convallis rutrum nisi sit amet consectetur. Integer finibus eros nec
neque rhoncus, id sollicitudin nisl scelerisque. Class aptent taciti sociosqu ad litora torquent per conubia
nostra, per inceptos himenaeos. Vestibulum in dolor ligula.

[Curabilur solliciludin urna diam, id lacreel ligula faucibus vilae. Inleger feugial accumsan eros, sed
ivehicula mi. UL ul porllitor enim, ul egeslas sem. Suspendisse sil amel euismod massa. Morbi vilae
lacinia ipsum. Mauris lincidunl diam egeslas auclor convallis. Morbi egel lincidunt ipsum. Quisque
iaculis nibh quis lacus condimentum mallis. Eliam in leo iaculis, efficilur quam sil amel, blandil dolor.
Maecenas sil amel dapibus urna. Nulla ac justo nibh. In ul leclus el mi feugial scelerisque sil amel
lacinia ipsum. Nulla pharelra anle eget lincidunt dignissim. Curabilur blandil mi non ornare elementum.
Morbi ac sapien sagillis, loborlis orci vel, vehicula nisl. Nulla sil amel diam vel orci auclor hendreril at
nec leo.

VMivamus omare, orci in placerat vestibulum, felis odio placerat mi, accumsan cursus sem ipsum id
massa. Integer sollicitudin sollicitudin blandit. Pellentesque pellentesque lorem sed enim laoreet, quis

In fact, we will have a header and footer shifting out of the view when scrolling. It doesn't
look user-friendly. Fortunately, we can change it easily using another fresh addition to CSS
called StiCky positioning (https://www.w3.0org/TR/css-position-3/#sticky-pos).

All we need to do is to modify slightly the title bar component:
./assets/css/Component/titlebar.css

.titlebar {
position: sticky;
top: O;

and the footer:
./assets/css/Component/footer.css
.footer {

position: sticky;
bottom: 0;

[29]

Creating a File Explorer with NW.js-Planning, Designing, and Development

In the preceding code, we declared that the title bar will stick to the top and footer to the
bottom. Run the application now, and you will note that both boxes are always visible,

regardless of scrolling:

File Explorer

purus imperdiel guis. Suspendisse sagillis lacinia arcu, a bibendum purus. Cras \rululuatrullum
maximus.

ICurabitur mattis pretium mollis. Fusce vel metus orci. Nullam tincidunt libero consequat tellus viverra,
leu dapibus metus posuere. Maecenas massa risus, sollicitudin eget vestibulum ac, ultrices et sem.
Phasellus nec porttitor magna. Nullam egestas nunc eget ex tincidunt eleifend. Nulla tristique lorem
vitae faucibus maximus. Sed in nulla quis nibh posuere facilisis. Integer id suscipit metus, commodo
ftincidunt nisl.

Ut pharetra velit in magna condimentum volutpat vel posuere ipsum. Quisque eget odio tristique,
icondimentum ipsum ut, accumsan felis. Morbi malesuada velit eget nisi auctor ultrices. Ut placerat
lsodales odio ullamcorper tempus. Suspendisse ac condimentum lectus, nec pellentesque turpis. Cras
imperdiet varius fermentum. Mauris convallis rutrum nisi sit amet consectetur. Integer finibus eros nec
neque rhoncus, id sollicitudin nisl scelerisque. Class aptent taciti sociosqu ad litora torquent per conubia
nostra, per inceptos himenaeos. Vestibulum in dolor ligula.

ICurabitur sollicitudin urna diam, id laoreet ligula faucibus vitae. Integer feugiat accumsan eros, sed
lvehicula mi. Ut ut porttitor enim, ut egestas sem. Suspendisse sit amet euismod massa. Morbi vitae
lacinia ipsum. Mauris tincidunt diam egestas auctor convallis. Morbi eget tincidunt ipsum. Quisque
iaculis nibh quis lacus condimentum mattis. Etiam in leo iaculis, efficitur quam sit amet, blandit dolor.
Maecenas sit amet dapibus urna. Nulla ac justo nibh. In ut lectus et mi feugiat scelerisque sit amet
lacinia ipsum. Nulla pharetra ante eget tincidunt dignissim. Curabitur blandit mi non ornare elementum.
Morbi ac sapien sagittis, lobortis orci vel, vehicula nisl. Nulla sit amet diam vel orci auctor hendrerit at
nec leo.

Vivamus omare, orci in placeral veslibulum, felis odio placeral mi, accumsan cursus sem ipsum id
massa. Integer solliciludin solliciludin blandil. Pellenlesgue pellenlesque lorem sed enim laoreel, quis
legestas lellus conseclelur. Fusce sil amel pellenlesque ligula. Mauris mollis posuere lincidunt.
Veslibulum ligula leo, fermenlum vel augue egel, omare egeslas magna. Pellenlesqgue velil massa,

Styling the title bar

Speaking of the view content, we are ready to populate the layout slots. We will start with

the title bar:

./index.html

<header class="l-app__titlebar titlebar">
/home/sheiko/Sites/file-explorer
_
x

</header>

[30]

Creating a File Explorer with NW.js-Planning, Designing, and Development

Basically, we want the current path to be displayed on the left and window controls on the
right. It can be achieved with Flexbox. It's a tiny layout that won't be reused, so it won't hurt
if we mix it in the component module:

./assets/css/Component/titlebar.css
.titlebar {

display: flex;
flex—-flow: row nowrap;
align-items: stretch;
}
.titlebar__path {
flex: 1 1 auto;
}
.titlebar__ _btn {
flex: 0 0 25px;
cursor: pointer;

} File Explorer

/home/sheiko/Sites/file-explorer

[31]

Creating a File Explorer with NW.js-Planning, Designing, and Development

Styling the directory list

The directory list will be used for navigation through the file system, so we will wrap it
with the nav > ul structure:

./index.html

<aside class="l-main__dir-list dir-list">
<nav>

<1li class="dir-list_ 1li">..</1li>
<li class="dir-list__ li">assets</1li>
<1li class="dir-list__li">js</1li>
<li class="dir-list__li">node_modules</1li>
<1li class="dir-list_ li">tests
</nav>
</aside>

To support it with styles, we go with the following code:
./assets/css/Component/dir-list.css

.dir-list_ 1i {
padding: 0.8em 0.6em;
cursor: pointer;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;

}

.dir-1list__li:hover {
background-color: var (--dirlist-bg-hover-color);
color: var(--dirlist-fg-hover-color);

}

Note that we've just introduced a couple of variables. Let's add them in the definitions
module:

./assets/css/Base/definitions.css

——-dirlist-bg-hover—-color: #d64937;
—-—-dirlist-fg-hover-color: #ffffff;

[32]

Creating a File Explorer with NW.js-Planning, Designing, and Development

As we ruin the application we can observe the new contents in the directory list:

-

File Explorer

/home/sheiko/Sites/file-explorer

assets
is
node_modules

lesls

Styling a file list

The file list will be represented as a table, but we will build it out of an unordered list.
The. /index.html file contains the following code:

<main class="l1l-main_ file-list file-list">
<nav>

<1li class="file-list__ 11 file-list_ head">
Name
Size
Modified
</1li>
<1li class="file-list__ 1i">
index.html
1.71 KB
3/3/2017, 15:44:19

[33]

Creating a File Explorer with NW.js-Planning, Designing, and Development

<1li class="file-list__1i">
package. json
539 B
3/3/2017, 17:53:19
</1li>

</nav>
</main>

In fact, here Grid Layout (https://www.w3.0rg/TR/css3-grid-layout/) would probably
suit better; however, at the time of writing, this CSS module was not yet available in NW js.
So, we go on again with Flexbox:

./assets/css/Component/file-list.css

.file-1ist {
background-color: var(--filelist-bg-color);
color: var(--filelist-fg-color);
cursor: pointer;

.file-1ist__ 11 {
display: flex;
flex—-flow: row nowrap;

.file-1list__li:not(.file-1list__ head) {
cursor: pointer;

}

.file-1list__li:not(.file-1list__ _head) :hover {
color: var(-—-filelist-fg-hover-color);

}

.file-1ist__ 11 > * {
flex: 1 1 auto;
padding: 0.8em 0.8em;
overflow: hidden;

.file-1list__1i name {
white-space: nowrap;
text-overflow: ellipsis;
width: 50%;

}

.file-1list__1i time {
width: 35%;

}
.file-1list__ 11 size {
width: 15%;

[34]

Creating a File Explorer with NW.js-Planning, Designing, and Development

}

I believe that everything is clear with the preceding code, except that you might not be
familiar with the pseudo-class :not ().l want to change the color and mouse cursor on
hover for all the file list items, except the table header. So, I achieve it with a selector that
can be read like any .file-list__ 1i thatisnot .file-list__head.

The following assignment goes to the definitions file:
./assets/css/Base/definitions.css

—-—-filelist-fg-hover-color: #d64937;

As we run the application we can see the table with the file list:

File Explorer

fhome/sheiko/Siles/file-explorer

Name Size Modified
assels Index.html 1.71 KB 3/3/2017, 15:44:19
s package.json 539B 3/3/2017, 17:53:19

node_modules

lesls

[35]

Creating a File Explorer with NW.js-Planning, Designing, and Development

Styling the footer

Eventually, we now reached the footer:

./index.html

<footer class="l-app__footer footer">
<h2 class="footer__header">File Explorer</h2>
<select class="footer__select">
<option value="en-US">English</option>
<option value="de-DE">Deutsch</option>
</select>
</footer>

We arrange the application title to the left and language selector to the right. What do we
use to lay this out? Obviously, Flexbox:

./assets/css/Component/footer.css

.footer {

display: flex;
flex-flow: row nowrap;
justify-content: flex-end;

.footer_ _header {
margin: 0.2em auto 0 O;
font-size: lem;

}

It's a special case. We set items to align right in general, but have reset it for the
.footer__header item that snuggles against the left border driven by margin-right:
auto:

[36]

Creating a File Explorer with NW.js-Planning, Designing, and Development

[) File Explorer

/home/shelko/Sites/file-explorer

Name Size Modified
assets index.html 1.71 KB 31372017, 15:44:19
js package.json 539 B 3/3/2017, 17:53:19
node_modules
tests
File Explorer English ¥

While looking at the result, I think it would be nice to emphasize the functional meaning of
some Ul elements with icons. I personally prefer the icon font of Material Design system
(https://material.io/icons/). So, as described in the Developer Guide
(http://google.github.io/material-design-icons/), we include the corresponding
Google Web Font to index . html:

./index.html

<link href="https://fonts.googleapis.com/icon?family=Material+Icons"
rel="stylesheet">

I would suggest that you dedicate a component that will represent an icon and fill it with
the rule set suggested by Material Design:

./assets/css/Component/icon.css

.icon {
font-family: 'Material Icons';
font-weight: normal;
font-style: normal;
font-size: 16px;
display: inline-block;

[371]

Creating a File Explorer with NW.js-Planning, Designing, and Development

line-height: 1;

text-transform: none;
letter—-spacing: normal;

word-wrap: normal;

white-space: nowrap;

direction: 1ltr;
-webkit-font-smoothing: antialiased;
text-rendering: optimizelegibility;

}
Now, we can add an icon anywhere in HTML, as simple as that:
<i class="material-icons">thumb_up</i>
Why not then make a folder icon accompanying items in the directory list?:

<1li class="dir-list_ 1i"><i class="icon">folder</i>assets</1li>

I believe that a globe icon will get along nicely with the language selector. So we modify the
HTML:

./index.html
<footer class="l-app__footer footer">

<h2 class="footer__header">File Explorer</h2>
<label class="icon footer__label">language</label>

and we add a class in the CSS:

./assets/css/Component/footer.css

.footer_ label {
margin-right: 0.2em;
font-size: 1.4em;
margin-top: 0.lem;

[381]

Creating a File Explorer with NW.js-Planning, Designing, and Development

As we run the application we can see an icon rendered next to the language selector control:

o File Explorer

/home/shelko/Sites/file-explorer

LI Name Size Modified

P index.html 1.71 KB 3/3/2017, 15:44:19

mjs package.json 539B 31312017, 17:53:19
Bnode_modules

Wiosts

File Explorer @ | Engisn ¥

[39]

Creating a File Explorer with NW.js-Planning, Designing, and Development

If something went wrong after running the application, you can always call for Developer
Tools--just press F12:

Developer Tools - chrome-extension://fmcghmenfnknnjmbpipihbdpopcnjalf/index.html

[w Elements Console Sources Metwork Timeline Profiles Application Security Audits :
bt Styles Computed EventListeners DOM Breakpoints Properties
P <head=..</head thov .cls +
¥ =body class="1-app .
P <header class="1l-app titlebar tement.style {
titlebar® data-bind="titlebar }
~=fheader file-list { file-list.css:1
vediv class="l-app_ main l-main background-color: var(--filelist-bg-color);
b <aside class="l-main_ dir-list dir- color: var(--filelist-fg-color);
list">.=/aside curser: pointer;

__file-list file- i

list">o=/main>=

Jdiv L-main file-list { 1-main.css:11
» =footer class="l-app footer footer flex: k1 1 auto;
w=ffooter
script src="./is/fapp.js"=</script * base,.css:5
/body box-sizing: border-box;
Jhtml }
footer, header, user agent stylesheet
C v, section {
display: block;
1
Inherited from body. 1-app
body { base.css5:15
font-family: Arial; -

html body div BuEIAEUCTENGE EAF R

Fulfilling the functional requirements

We've described the semantic structure of our application with HTML. We have defined
with CSS how our UI elements shall look. Now, we will teach our application to retrieve
and update the content as well as to respond to user events. Actually, we will allocate the
following tasks to several modules:

e DirService: This provides control on directory navigation

e rileservice: This handles file operations

e FileListView: This updates the file list with the data received from DirService,
handles user events (open file, delete file, and so on) using FileService

e DirListView: This updates the directory list with the data received from
DirService and handles navigation events using DirService

[40]

Creating a File Explorer with NW.js-Planning, Designing, and Development

e TitleBarPath: This updates the current location with the path received from
DirService
e TitleBarActions: This handles user iteration with title bar buttons

e LangSelector: This handles user iteration with language selector

However, before we start coding, let's see what we have in our arsenal.

NW js gets distributed together with the latest stable version of Node.js, which has a great
support for ES2015/ES2016 (http://node.green). It means that we can use any of the
inherent new JavaScript features, but modules (http://bit.1ly/2moblws). Node.js has its
own Common]JS-compliant module loading system. When we request a module by path, for
example, require ("./foo"), the runtime searches for a corresponding file (foo. js,
foo. json, or foo.node) or a directory (. /foo/index. js). Then, Node.js evaluates the
module code and returns the exported type.

For example, we can create a module that exports a string;:

./foo.]js
console.log("foo runs");
exports.message = "foo's export";

and another one, which imports from the first module:
./bar.js

const foo = require("./foo");
console.log(foo.message);

If we run it, we get the following:

$node bar.js
foo runs
foo's export

One should note here that regardless of how many times we require a module, it gets
executed just once, and every time, its exports are taken from the cache.

Starting with ES2015

As I have already mentioned, NW.js provides a complete support of JavaScript of ES2015
and ES2016 editions. To understand what it really means, we need a brief excursion into the
history of the language. The standardized specification for JavaScript was first released in
1997 (ECMA-262 1st Edition).

[41]

Creating a File Explorer with NW.js-Planning, Designing, and Development

Since then, the language has not really changed for 10 years. The 4th edition proposed in
2007 called for drastic changes. However, the working group (TC39) failed to agree on the
feature set. Some proposals have been deemed unsound for the Web, but some were
adopted in a new project code named Harmony. The project turned into the 6th edition of
the language specification and was released in 2015 under the official name ES2015. Now,
the committee is releasing a new specification every year.

New JavaScript is backward compatible with an earlier version. So, you can still write code
with the syntax of the ECMAScript 5th edition or even 3rd one, but why should we lose the
opportunity to work with the new advanced syntax and feature set? I think it would be
helpful if we now go through some new language aspects that will be used in the
application.

Scoping
In the old days, we used to always go with the var statement for variable declarations.

ES2015 introduces two new declaration variables--1et and const. The var statement
declares a variable in a function scope:

(function () {
var foo = 1;
if (true) {
var foo = 2;
console.log(foo);
s
console.log(foo);
PO

$ node eséb.js
2
2

A variable declared with var (foo) spans the entire function scope, meaning that every
time we reference it by name, we target the same variable. Both 1et and const operate on
block scopes (i f statement, for/while loops, and so on) as shown:

(function () {

let foo = 1;

if (true) {
let foo = 2;
console.log(foo);

}

console.log(foo);

PO

[42]

Creating a File Explorer with NW.js-Planning, Designing, and Development

$ node esé6.js
2
1

As you can see from the preceding example, we can declare a new variable in a block and it
will exist only within that block. The statement const works the same, except it defines a
constant that cannot be reassigned after it was declared.

Classes

JavaScript implies a prototype-based, object-oriented programming style. It differs from
class-based OOP that is used in other popular programming languages, such as C++, C#,
Objective-C, Java, and PHP. This used to confuse newcomer developers. ES2015 offers a
syntactic sugar over the prototype, which looks pretty much like canonical classes:

class Machine {
constructor (name) {
this.name = name;
}
}
class Robot extends Machine {
constructor (name) {
super (name) ;

}

move (direction = "left"){
console.log(this.name + " moving ", Robot.normalizeDirection(direction
))i
}
static normalizeDirection(direction) {

return direction.toLowerCase();

}
}

const robot = new Robot ("R2D2");
robot .move () ;
robot .move ("RIGHT");

$ node es6.js
R2D2 moving left
R2D2 moving right

Here, we declare a Machine class that during instantiation assigns a value to a prototype
property, name. A Robot class extends Machine and, therefore, inherits the prototype. In
subtype, we can invoke the parent constructor with the super keyword.

[43]

Creating a File Explorer with NW.js-Planning, Designing, and Development

We also define a prototype method--move--and a static method--normalizeDirection.
The move method has a so-called default function parameter. So, if we omit the direction
argument while calling move method, the parameter automatically sets to "left".

In ES2015, we can use a short syntax for the methods and do not need to repeat function
keywords with every declaration. It's also available for object literals:

const R2D2 = {
name: "R2D2",
move () {
console.log("moving");
o
fly () {
console.log("flying");
}
bi

The template literal

Another great addition to JavaScript is template literals. These are string literals that can be
multiline and can include interpolated expressions (" ${expression}). For example, we
can refactor our move method body, as follows:

console.log(°
${this.name} moving ${Robot.normalizeDirection(direction)}
)

Getters and setters

Getters and setters were added back in ES5.1. In ES2015, it was extended for computed
property names and goes hand in hand with a short method notation:

class Robot {

get nickname () {

return "But you have to prove first that you belong to the Rebel

Alliance!";

}

set nickname (nickname) {

throw new Error("Seriously?!");

}
}i

[44]

Creating a File Explorer with NW.js-Planning, Designing, and Development

const robot = new Robot ();
console.log(robot.nickname);
robot.nickname = "trashcan";

$ node es6.]s
But you have to prove first that you belong to the Rebel Alliance!
Error: Seriously?!

Arrow functions

A function declaration also obtained syntactic sugar. We write it now with a shorter syntax.
It's remarkable that a function defined this way (fat arrow function) automatically picks up
the surrounding context:

class Robot extends Machine {

Y
isRebel () {
const ALLOWED_NAMES = ["R2D2", "C3PO"];
return ALLOWED_NAMES.find((name) => {
return name === this.name;

1)
}

When using old function syntax, the callback function passed to an array's method, £ind,
would lose the context of the Robot instance. Arrow functions, though, do not create their
own context and, therefore, outer context (this) gets in the closure.

In this particular example, as it often goes with array extras, the callback body is extremely
short. So, we can use an even shorter syntax:

return ALLOWED_NAMES.find(name => name === this.name);

Destructuring

In new JavaScript, we can extract specific data from arrays and objects. Let's say, we have
an array that could be built by an external function, and we want its first and second
elements. We can extract them as simple as this:

const robots = ["R2D2", "C3PO", "BB8"];
const [r2d2, c3po] = robots;
console.log(r2d2, c3po);

[45]

Creating a File Explorer with NW.js-Planning, Designing, and Development

So here, we declare two new constants--r2d2 and c3po--and assign the first and the second
array elements to them, respectively.

We can do the same with objects:

const meta = {
occupation: "Astromech droid",
homeworld: "Naboo"

bi

const { occupation, homeworld } = meta;
console.log(occupation, homeworld);

What did we do? We declared two constants--occupation and homewor1ld--that receive
values from correspondingly named object members.

What is more, we can even alias an object member while extracting:

const { occupation: affair, homeworld: home } = meta;
console.log(affair, home);

In the last example, we delegated the values of object members--occupation and
homeworld--to newly created constants--affair and home.

Handling windowing actions

Coming back to the file-explorer, we can start with the TitleBarActions module that
listens to user click events on title bar buttons and performs the corresponding windowing
action. First, we need to mark the action nodes in HTML. The . /index.html file contains
the following code:

<header class="l-app__titlebar titlebar" data-bind="titlebar">

x
</header>

Here, we specify our bounding box (data-bind="titlebar") and the close window
button (data-bind="close™"). Let's begin with the only button. The
./Jjs/View/TitleBarActions. js file contains the following code:

class TitleBarActionsView {
constructor (boundingEl) {

this.closeEl = boundingEl.querySelector("[data-bind=close]");
this.bindUi () ;

[46]

Creating a File Explorer with NW.js-Planning, Designing, and Development

bindUi () {
this.closeEl.addEventListener("click", this.onClose.bind(this
), false);
t
onClose(e) |
e.preventDefault ();
nw.Window.get () .close();

}
}

exports.TitleBarActionsView = TitleBarActionsView;

Here, we define a TitleBarActionView class that accepts an HTML element as a
parameter. This element represents the view bounding box, meaning that the instance of
this class will take care only of the passed in element and its descendants. During
construction, the class will search for the first element in the scope of the bounding box that
matches selector [data-bind=close]--the close window button of the title bar. In the
bindUI method, we subscribe for clicks events on the Close button. When the button is
clicked, the onClose method is called in the context of a Tit leBarActionView instance, as
we bound itin bindUi (this.onClose.bind(this)). The onClose method closes the
window using the NW.js Window API
(http://docs.nsz.io/en/latest/References/window/),nanuﬂyitrequesh;acurrent
window object nw.Window.get () and calls its close method.

NW js doesn't provide a module for the API, but exposes the nw variable in the global scope.

So, we have the first view module and can use it the main script:

./Jjs/app.js
const { TitleBarActionsView } = require("./js/View/TitleBarActions");
new TitleBarActionsView (document.querySelector("[data-bind=titlebar]")

)i

Here, we import the TileBarActionView class from the . /js/View/TitleBarActions
module and make an instance of it. We pass the first document element matching selector
[data-bind=titlebar] to the class constructor.

Have you noticed that we used destructuring while importing from the module?
Particularly, we extracted the Tit leBarActionsView class into a respectively called
constant.

[47]

Creating a File Explorer with NW.js-Planning, Designing, and Development

Now, we can launch the application and observe, as clicking on the close button really
closes the window.

Going further, we take care of other title bar buttons. So, we adapt our index.html file to
identify the buttons, nodes with unmaximize, maximize, and minimize values for the
data-bind attribute. Then, we collect in the TileBarActionView constructor references to
the corresponding HTML elements:

this.unmaximizeEl = boundingEl.querySelector("[data-bind=unmaximize]");
this.maximizeEl = boundingEl.querySelector("[data-bind=maximize]");
this.minimizeEl = boundingEl.querySelector("[data-bind=minimize]");

Of course, we have to add new listeners in the bindUi module, respectively:

this.minimizeEl.addEventListener("click", this.onMinimize.bind(this),
false);

this.maximizeEl.addEventListener("click", this.onMaximize.bind(this),
false);

this.unmaximizeEl.addEventListener ("click", this.onUnmaximize.bind(this

)y, false);

The handler for minimizing the window button looks pretty much the same as the one we
have already examined previously. It just uses the corresponding method of the NW js
Window API:

onMinimize(e) |
e.preventDefault ();
nw.Window.get () .minimize () ;

}

With maximize and minimize (restore) window buttons, we need to take the fact that while
one button is visible the second one shall be hidden into account. This we achieve with the
toggleMaximize method:

toggleMaximize () {
this.maximizeEl.classList.toggle("is-hidden");
this.unmaximizeEl.classList.toggle("is-hidden");

}

Event handler for these buttons calls this method to the toggle buttons view:

onUnmaximize (e) {
e.preventDefault () ;
nw.Window.get () .unmaximize () ;

this.toggleMaximize ();
}

onMaximize(e) |

[48]

Creating a File Explorer with NW.js-Planning, Designing, and Development

e.preventDefault () ;
nw.Window.get () .maximize () ;
this.toggleMaximize ();

Writing a service to navigate through
directories

Other modules, such as FileListView, DirListView, and TitleBarPath, consume the
data from the filesystem, such as directory list, file list, and the current path. So we need to
create a service that will provide this data:

./js/Service/Dir.Js

const fs = require("fs"),
{ join, parse } = require("path");

class DirService {

constructor (dir = null){
this.dir = dir || process.cwd();

static readDir(dir) {
const fInfoArr = fs.readdirSync(dir, "utf-8").map((fileName) => {
const filePath = join(dir, fileName),
stats = DirService.getStats(filePath);
if (stats === false) {
return false;
}
return
fileName,
stats
bi
}) i

return fInfoArr.filter(item => item !== false);

getDirList () {
const collection = DirService.readDir(this.dir).filter((fInfo)
=> fInfo.stats.isDirectory());
if (!this.isRoot ()) {
collection.unshift ({ fileName: ".." });
}

return collection;

[49]

Creating a File Explorer with NW.js-Planning, Designing, and Development

}

getFileList () {
return DirService.readDir(this.dir).filter((fInfo) =>
fInfo.stats.isFile());
t

isRoot () {
const { root } = parse(this.dir);
return (root === this.dir);

}

static getStats(filePath) {
try {
return fs.statSync(filePath);
} catch(e) {
return false;

}

i
exports.DirService = DirService;

First of all, we import Node.js core module fs that provides us access to the filesystem. We
also extract functions--join and parse--from the path module. We will need them for
manipulations in the file/directory path.

Then, we declare the DirService class. On construction, it creates a dir property, which
takes either a passed-in value or the current working directory (process.cwd ()). We add a
static method--readDir--to the class that reads the directory content on a given location.
The fs.readdirsSync method retrieves the content of a directory, but we extend the
payload with file/directory stats
(https://nodejs.org/api/fs.html#fs_class_£fs_stats). In case the stats cannot be
obtained, we replace its array element with false. To avoid such gaps in the output array,
we will run the array filter method. Thus, on the exit point, we have a clean array of
filenames and file stats.

The getFileList method requests readDir for the current directory content and filters
the list to leave only files in there.

The getDirList method filters, evidently, the list for directories only. Besides, it prepends
the list with a . . directory for upward navigation, but only if we are not in the system root.

[50]

Creating a File Explorer with NW.js-Planning, Designing, and Development

So, we can get both lists from the modules consuming them. When the location changes and
new directory and file lists get available, each of these modules have to update. To
implement it, we will use the observe pattern:

./js/Service/Dir.js

VAR
const EventEmitter = require("events");

class DirService extends EventEmitter {

constructor(dir = null){

super () ;

this.dir = dir || process.cwd();
}

setDir(dir = ""){

let newDir = path.join(this.dir, dir);

// Early exit

if (DirService.getStats(newDir) === false) {
return;

3

this.dir = newDir;

this.notify();

}

notify () {
this.emit ("update");
}
/...
}

We export from events, core module the EventEmitter class
(https://nodejs.org/api/events.html). By extending it with DirService, we make
the service an event emitter. It gives us the possibility to fire service events and to subscribe
on them:

dirService.on("customEvent", () => console.log("fired customEvent"));
dirService.emit ("customEvent");

So whenever the setDir method is called to change the current location, it fires an event of
type "update". Given the consuming modules are subscribed, they respond to the event by
updating their views.

[51]

Creating a File Explorer with NW.js-Planning, Designing, and Development

Unit-testing a service

We've written a service and assume that it fulfills the functional requirements, but we do
not know it for sure, yet. To check it, we will create a unit-test.

We do not have any test environment so far. I would suggest going with the Jasmine test
framework (https://jasmine.github.io/). We will create in our tests/unit-tests
subfolder a dedicated NW.js project, which will be used for the testing. This way, we get the
runtime environment for tests, identical to what we have in the application.

So we create the test project manifest:
./tests/unit-tests/package. json

{

"name": "file-explorer",
"main": "specs.html",
"chromium-args": "--mixed-context"

}
It points at the Jasmine test runner page, the one we placed next to package. json:
./tests/unit-tests/specs.html

<!doctype html>
<html>
<head>

<meta charset="utf-8">

<title>Jasmine Spec Runner</title>

<link rel="stylesheet" type="text/css"
href="https://cdnjs.cloudflare.com/ajax/libs/jasmine/2.5.2/jasmine.css">

<script
src="https://cdnjs.cloudflare.com/ajax/libs/jasmine/2.5.2/jasmine.js"></scr
ipt>

<script
src="https://cdnjs.cloudflare.com/ajax/libs/jasmine/2.5.2/jasmine—

html.js"></script>

<script
src="https://cdnjs.cloudflare.com/ajax/libs/jasmine/2.5.2/boot.js"></script
>
</head>
<body>
<div id="sandbox" style="display: none"></div>
<script>
// Catch exception and report them to the console.
process.on("uncaughtException", (err) => console.error(err));
const path = require("path"),

[52]

Creating a File Explorer with NW.js-Planning, Designing, and Development

jetpack = require("fs-jetpack"),
matchingSpecs = jetpack.find("../../3js", |
matching: [
"*x spec.js",
"lnode_modules/**"
]

}, "relativePath");

matchingSpecs.forEach((file) => {
require (path.join(__dirname, file));
)i
</script>
</body>
</html>

What does this runner do? It loads Jasmine, and with help of the £s-jetpack npm module
(https://www.npmjs.com/package/fsfjetpack)ittraVEﬁmstheSOUICGCﬁIeCKHy
recursively for all the files matching " * . spec. js" pattern. All these files get added to the

test suite. Thus, it assumes that we keep our test specifications next to the target source
modules.

fs—-jetpack is an external module, and we need to install the package and add it to the
development dependencies list:

npm i -D fs-jetpack

Jasmine implements a wide-spread, frontend development testing paradigm Behavior-
driven Development (BDD) that can be described with the following pattern:

describe("a context e.g. class or module", () => {

describe("a context e.g. method or function", ()
it ("does what expected", () => {

expect (returnValue) .toBe(expectedValue);

= {

As it is generally accepted in unit testing, a suite may have setup and teardown:

beforeEach (() => {

// something to run before to every test
P
afterEach (() => {

// something to run after to every test
P

[531]

Creating a File Explorer with NW.js-Planning, Designing, and Development

When testing a service that touches the filesystem or communicates across the network or
talks to databases, we have to be careful. A good unit test is independent from the
environment. So, to test our DirService, we have to mock the filesystem. Let's test the
getFileList method of the service class to see it in action:

./js/Service/Dir.spec.]s

const { DirService } = require("./Dir"),
CWD = process.cwd(),
mock = require("mock-fs"),
{ join } = require("path");
describe("Service/Dir", () => {
beforeEach (() => {
mock ({
foo: {
bar: {
baz: "baz", // file contains text baz
qux: "qux"
}

}
)i
)i
afterEach(mock.restore);

describe ("#getFileList", () => {
it ("receives intended file 1list", () => {
const service = new DirService(join("foo", "bar"));
service.setDir("bar");
let files = service.getFilelList();

expect (files.length).toBe(2);
)i

it ("every file has expected properties", () => {
const service = new DirService(join("foo", "bar"));
const files = service.getFileList ();
console.log(files);
const [file] = files;
expect (file.fileName).toBe("baz");
expect (file.stats.size).toBe(3);
expect (file.stats.isFile()).toBe(true);
expect (file.stats.isDirectory ()).toBe(false);
expect (file.stats.mtime).toBeTruthy();

[54]

Creating a File Explorer with NW.js-Planning, Designing, and Development

Before running a test, we point the £s method to a virtual filesystem with the folder
/foo/bar/ that contains the baz and qux files. After every test, we restore access to the
original filesystem. In the first test, we instantiate the service on the foo/bar location and
read the content with the getFileList () method. We assert the number of found files as 2
(as we defined in beforeEach). In the second test, we take the first element of the list and
assert that it contains the intended filename and stats.

As we use an external npm package (https://www.npmjs.com/package/mock-£s) for
mocking, we need to install it:

npm i -D mock-fs

As we came up with the first test suite, we can modify our project manifest file for a proper
test runner script. The . /package. json file contains the following code:

{
"scripts": {

"test": "nw tests/unit-tests"
Hy

}

Now, we can run the tests:

npm test

[551]

Creating a File Explorer with NW.js-Planning, Designing, and Development

NW js will load and render the following screen:

O Jasmine Spec Runner

@ sosmine

2 specs, 0 failures finished in 8.813s

Service/Dir

#getFilelist
receives intended file list
every file has expected properties

Ideally, unit tests cover all the available functions/methods in the context. I believe that
from the preceding code you will get an idea of how to write the tests. However, you may
stumble over testing the EventEmitter interface; consider this example:

describe ("#setDir", () => {
it ("fires update event", (done) => {
const service = new DirService("foo");
service.on("update", () => {
expect (true) .toBe(true);
done () ;

)i

service.notify();
)i
)i

EventEmitter works asynchronously. When we have asynchronous calls in the test body,
we shall explicitly inform Jasmin when the test is ready so that the framework could
proceed to the next one. That happens when we invoke the callback passed to its function.
In the preceding sample, we subscribe the "update" event on the service and call notify
to make it fire the event. As soon as the event is captured, we invoke the done callback.

[56]

Creating a File Explorer with NW.js-Planning, Designing, and Development

Writing view modules

Well, we have the service, so we can implement the view modules consuming it. However,
first we have to mark the bounding boxes for the view in the HTML:

./index.html

<aside class="l-main__dir-list dir-list">
<nav>
<ul data-bind="dirList">
</nav>
</aside>
<main class="l-main__ file-list file-list">
<nav>
<ul data-bind="fileList">
</nav>
</main>

The DirList module

What are our requirements for the DirList view? It renders the list of directories in the
current path. When a user selects a directory from the list, it changes the current path.
Subsequently, it updates the list to match the content of the new location:

./js/View/DirList.]s
class DirListView {

constructor (boundingEl, dirService) {
this.el = boundingEl;

this.dir = dirService;
// Subscribe on DirService updates
dirService.on("update", () => this.update(dirService.getDirList ())

)i
}
onOpenDir(e){
e.preventDefault () ;
this.dir.setDir(e.target.dataset.file);

}

update (collection) {
this.el.innerHTML = "";
collection.forEach((fInfo) => {

this.el.insertAdjacentHTML ("beforeend",
"<1i class="dir-list__ 1i" data-file="${fInfo.fileName}">

[571

Creating a File Explorer with NW.js-Planning, Designing, and Development

<i class="icon">folder</i> ${fInfo.fileName}</1i>");

)i

this.bindUi ();
t
bindUi () {

const liArr = Array.from(this.el.querySelectorAll("li[data-file]")

)i
liArr.forEach((el) => {
el.addEventListener("click", e => this.onOpenDir(e), false);

1)
}
exports.DirListView = DirListView;

In the class constructor, we subscribe for the DirService "update" event. So, the view
gets updated every time the event fired. Method update performs view update. It populates
the bounding box with list items built of data received from DirsService . Asitis done, it
calls the binduUi method to subscribe the openDir handler for click events on newly
created items. As you may know, Element .querySelectorAll returns not an array, but a
non-live NodeList collection. It can be iterated in a for. . of loop, but I prefer the forEach
array method. That is why I convert the NodeList collection into an array.

The onoOpenDir handler method extracts target directory name from the data-file
attribute and passes it to DirList in order to change the current path.

Now, we have new modules, so we need to initialize them in app. js:

./js/app.Jjs
const { DirService } = require("./js/Service/Dir"),
{ DirListView } = require("./Jjs/View/DirList"),
dirService = new DirService();
new DirListView(document.querySelector("[data-bind=dirList]"),

dirService);
dirService.notify();

Here, we require new acting classes, create an instance of service, and pass it to the
DirListView constructor together with a view bounding box element. At the end of the
script, we call dirService.notify () to make all available views update for the current
path.

[581]

Creating a File Explorer with NW.js-Planning, Designing, and Development

Now, we can run the application and observe as the directory list updates as we navigate
through the filesystem:

npm start

Unit-testing a view module

Seemingly, we are expected to write unit test, not just for services, but for other modules as
well. When testing a view we have to check whether it renders correctly in response to

specified events:
./js/View/DirList.spec.]s

const { DirListView } = require("./DirList"),
{ DirService } = require("../Service/Dir");

describe("View/DirList", function(){

beforeEach (() => {

this.sandbox = document.getElementById("sandbox");

this.sandbox.innerHTML = '<ul data-bind="dirList">";
)i
afterEach(() => {

this.sandbox.innerHTML = " ;
)i
describe ("#update", function () {

it ("updates from a given collection", () => {

const dirService = new DirService(),
view = new DirListView(this.sandbox.querySelector("[data-
bind=dirList]"), dirService);

view.update ([
{ fileName: "foo" }, { fileName: "bar" }

1)s
expect (this.sandbox.querySelectorAll (".dir-list__ 1i") .length

) .toBe(2);
)i
)i
)i

If you might remember in the test runner HTML, we had a hidden div element with
sandbox for id. Before every test, we populate that element with the HTML fragment the
view expects. So, we can point the view to the bounding box with the sandbox.

[591]

Creating a File Explorer with NW.js-Planning, Designing, and Development

After creating a view instance, we can call its methods, supplying them with an arbitrary
input data (here, a collection to update from). At the end of a test, we assert whether the
method produced the intended elements within the sandbox.

In the preceding test for simplicity's sake, I injected a fixture array straight to the update
method of the view. In general, it would be better to stub getDirList of DirService
using the Sinon library (http://sinonjs.org/). So, we could also test the view behavior by
calling the notify method of DirService--the same as it happens in the application.

The FileList module

The module handling the file list works pretty similar to the one we have just examined
previously:

./js/View/FilelList.]s
const filesize = require("filesize");

class FileListView {

constructor (boundingEl, dirService) {
this.dir = dirService;
this.el = boundingEl;
// Subscribe on DirService updates
dirService.on("update", () => this.update
dirService.getFileList ()));

}

static formatTime (timeString) {
const date = new Date(Date.parse(timeString));
return date.toDateString();

update (collection) {
this.el.innerHTML = “<1li class="file-list_ 1i file-list__ _head">
Name
Size
Modified
</1i>";
collection.forEach((fInfo) => {
this.el.insertAdjacentHTML ("beforeend", '<l1li class="file-
list_ 1i" data-file="${fInfo.fileName}">
${fInfo.fileName}
<span class="file-
list__1i_ _size">${filesize(fInfo.stats.size) }
${FilelListView.formatTime (
fInfo.stats.mtime) }

[60]

Creating a File Explorer with NW.js-Planning, Designing, and Development

</1i>") ;
)i
this.bindUi () ;
t

bindUi () {
Array.from(this.el.querySelectorAll(".file-1list__1i")
) .forEach((el) => {
el.addEventListener ("click", (e) => {
e.preventDefault () ;
nw.Shell.openltem(this.dir.getFile(el.dataset.file));

}, false);
1) i

}

exports.FileListView = FileListView;

In the preceding code, in the constructor, we again subscribed the "update" event, and
when it was captured, we run the update method on a collection received from the
getFileList method of DirService. It renders the file table header first and then the
rows with file information. The passed-in collection contains raw file sizes and modification
times. So, we format these in a human-readable form. File size gets beautified with an
external module--filesize (https://www.npmis.com/package/filesize)--and the
timestamp we shape up with the formatTime static method.

Certainly, we shall load and initialize the newly created module in the main script:

./Jjs/app.js
const { FileListView } = require("./Jjs/View/FileList");
new FileListView(document.querySelector("[data-bind=fileList]"),

dirService);

The title bar path module

So we have a directory and file lists responding to the navigation event, but the current path
in the title bar is still not affected. To fix it, we will make a small view class:

./js/View/TitleBarPathView. js

class TitleBarPathView {
constructor (boundingEl, dirService) {
this.el = boundingEl;

[61]

Creating a File Explorer with NW.js-Planning, Designing, and Development

dirService.on("update", () => this.render(dirService.getDir ()));
}
render (dir) {
this.el.innerHTML = dir;
}
}

exports.TitleBarPathView = TitleBarPathView;

You can note that the class simply subscribes for an update event and modifies the current
path accordingly to DirService.

To get it live, we will add the following lines to the main script:

./Jjs/app.js
const { TitleBarPathView } = require("./Jjs/View/TitleBarPath");
new TitleBarPathView (document.querySelector("[data-bind=path]"),

dirService);

Summary

So we've made it to the milestone and have now a working version of the File Explorer
providing basic functionality. What have we achieved so far?

We went together though the traditional development routine: we planned, sketched, set
up, templated, styled, and programmed. On the way, we discussed the best practices of
writing maintainable and conflict-free CSS. We have discovered that NW.js enables the
features of the latest CSS and JavaScript specifications. So while refactoring our CSS code,
we exploited new aspects, such as custom properties and position sticky. We also had a tour
of the basics of ES2015, which helped us to build our JavaScript modules in a cleaner syntax
using classes, arrow functions, destructuring, and block scope declarations.

What is more, we explored a few of the goodies normally unavailable in the browser, such
as Node js core and external modules, and the desktop environment integration API. Thus,
we were able to access the filesystem and implement windowing actions (close, minimize,
maximize, and restore). We made a service extending Node.js EventEmitter and
incorporated the event-based architecture to serve our needs.

[62]

Creating a File Explorer with NW.js-Planning, Designing, and Development

We didn't forget about unit-testing. We set up Jasmine testing runner and discussed the
essentials of BDD specifications. While writing the application unit tests, we examined an
approach to mock the filesystem and one to test Document Object Model (DOM)
manipulations.

Evidently, there's still much left for the second chapter, where we will augment the existing
functionality, dive deeper into NW.js API, and go through the preproduction steps. Yet, I
hope that you have already accrued a grasp on NW.js and HTML5 desktop development
basics. See? It doesn't differ much from traditional web development after all, just unlocks
new exciting possibilities.

[63]

Creating a File Explorer with
NW.js — Enhancement and
Delivery

Well, we have a working version of File Explorer that can be used to navigate the filesystem
and open files with the default associated program. Now we will extend it for additional file
operations, such as deleting and copy pasting. These options will keep in a dynamically
built context menu. We will also consider the capabilities of NW js to transfer data between
diverse applications using the system clipboard. We will make the application respond to
command-line options. We will also provide support for multiple languages and locales.
We will protect the sources by compiling them into native code. We will consider packaging
and distribution. At the end, we will set up a simple release server and make the File
Explorer auto-update.

Internationalization and localization

Internationalization, often abbreviated as i18n, implies a particular software design
capable of adapting to the requirements of target local markets. In other words, if we want
to distribute our application to markets other than the USA, we need to take care of
translations, formatting of datetime, numbers, addresses, and such.

Creating a File Explorer with NW.js — Enhancement and Delivery

Date format by country

Internationalization is a cross-cutting concern. When you are changing the locale, it usually
affects multiple modules. So, I suggest going with the observer pattern that we already
examined while working on DirService:

./js/Service/I18n.7s

const EventEmitter = require("events");

class Il8nService extends EventEmitter {
constructor () {

super () ;
this.locale = "en-US";
}
notify () {
this.emit ("update");
}
}
exports.Il8nService = Il8nService;

As you see, we can change the 1ocale property by setting a new value to the 1ocale
property. As soon as we call the not i fy method, all the subscribed modules immediately

respond.

However, locale is a public property and therefore we have no control over its access and
mutation. We can fix it using overloading:

./js/Service/I18n.7s

/...
constructor () {
super () ;
this._locale = "en-US";
}
get locale () {

return this._locale;

}

set locale(locale){
// validate locale...
this._locale =

locale;

[65]

Creating a File Explorer with NW.js — Enhancement and Delivery

}
VA

Now, if we access the 1ocale property of the I18n instance, it gets delivered by the getter
(get locale). When setting it a value, it goes through the setter (set locale). Thus, we
can add extra functionalities, such as validation and logging on property access and
mutation.

Remember that we have a combo box for selecting the language in the HTML. Why not give
it a view?

./js/View/LangSelector. js:

class LangSelectorView {
constructor (boundingEl, 118n) {
boundingEl.addEventListener ("change",

this.onChanged.bind(this), false);
this.il8n = i18n;
t
onChanged(e){
const selectEl

= e.target;
this.il8n.locale = selectEl.value;
this.il8n.notify();
}

exports.LangSelectorView = LangSelectorView;

In the preceding code, we listen for change events on the combo box.

When the event occurs, we change the 1ocale property with the passed-in I18n instance
and call not1ify to inform the subscribers:

./Jjs/app.js
const 118nService = new Il8nService(),
{ LangSelectorView } = require("./js/View/LangSelector");
new LangSelectorView (document.querySelector("[data-bind=langSelector]"),
il8nService);

[66]

Creating a File Explorer with NW.js — Enhancement and Delivery

Well, we can change the locale and trigger the event. What about consuming modules?
In the FileList view, we have the formatTime static method that formats the passed in
timeString for printing. We can make it formatted in accordance with the currently
chosen locale:

./js/View/FilelList.js:

constructor (boundingEl, dirService, il8nService) {

/...
this.il18n = il8nService;

//
Subscribe on il8nService updates

il8nService.on("update", () => this.update(
dirService.getFileList ())

)i

¥

static formatTime (timeString, locale){

const date = new Date(Date.parse(timeString)),
options = {
year: "numeric", month: "numeric", day: "numeric",
hour:

"numeric", minute: "numeric", second: "numeric",
hourl2: false
bi
return

date.toLocaleString(locale, options);

¥
update (collection) {

/...

this.el.insertAdjacentHTML ("beforeend", "<1li class="file-list__ 1i" data-
file="${fInfo.fileName}">

${fInfo.fileName}
<span class="file-

list__1i_ _size">${filesize(fInfo.stats.size) }

${FileListView.formatTime (fInfo.stats.mtime, this.il8n.locale) }
</1i>") ;

[67]

Creating a File Explorer with NW.js — Enhancement and Delivery

/]

}
/]

In the constructor, we subscribe to the 118n update event and update the file list every time
the locale changes. The formatTime static method converts passed the string into a Date
object and uses the Date.prototype.toLocaleString () method to format the datetime
according to a given locale. This method belongs to the so called ECMAScript
Internationalization API
(http://norbertlindenberg.com/2012/12/ecmascript—internationalization—
api/index.html). This API describes methods of built-in objects--String, Date, and
Number--designed to format and compare localized data. However, what it really does is to
format a Date instance with toLocaleString for the English (United States) locale (en—
Us), and it returns the date, as follows:

3/17/2017, 13:42:23
However, if we feed German locale (de-DE) to the method, we get quite a different result:

17.3.2017, 13:42:23

To put it into action, we set an identifier to the combo box. The . /index.html file contains
the following code:

<select class="footer__select" data-bind="langSelector">

Of course, we have to create an instance of the I18n service and pass it in
LangSelectorViewand FileListView:

./js/app.js
//
const { I18nService } = require("./js/Service/I18n"),
{ LangSelectorView } = require

"./js/View/LangSelector"),
il18nService = new Il8nService();

new LangSelectorView (

document .querySelector ("[data-bind=langSelector]"), il8nService);

//

[68]

Creating a File Explorer with NW.js — Enhancement and Delivery

new FileListView (

document .querySelector ("[data-bind=filelList]"), dirService, il8nService

)

Now we shall start the application. Yeah! As we change the language in the combo box, the
file modification dates are adjusted accordingly:

-

File Explorer

/home/sheiko/Sites/book/file-explorer/CH2/func-i18n-1

I Name Size Modified

B 5556is icon-16x16.png 1.06 KB 20.3.2017, 12:30:21

s icon-32x32.png 1.35 KB 20.3.2017, 12:30:21

™ node_modules icon-32x32@2x.png 12.58 KB 20.3.2017, 12:30:21

™ tosts Ilcon-48x48.png 1.63 KB 20.3.2017, 12:30:21
index.html 1.52 KB 13.3.2017, 09:18:07
package.json 637 B 20.3.2017, 12:30:21

File Explorer -2}

Multilingual support

Localization dates and numbers is a good thing, but it will be more exciting to provide
translation to multiple languages. We have a number of terms across the application,
namely, the column titles of the file list and tooltips (via the t it 1e attribute) on windowing
action buttons. What we need is a dictionary. Normally, it implies sets of token translation
pairs mapped to language codes or locales. Thus, when you request from the translation
service a term, it can correlate to a matching translation according to the currently used
language/locale.

[69]

Creating a File Explorer with NW.js — Enhancement and Delivery

Here, I have suggested making the dictionary a static module that can be loaded with the
required function:

./js/Data/dictionary.js

exports.dictionary = {
"en-US": {
NAME: "Name",
SIZE: "Size",
MODIFIED:

"Modified",
MINIMIZE_WIN: "Minimize window",
RESTORE_WIN: "Restore window",
MAXIMIZE_WIN:

"Maximize window",
CLOSE_WIN: "Close window"
}I
"de-DE": {
NAME: "Dateiname",

SIZE: "Grosse",
MODIFIED: "Gedndert am",
MINIMIZE_WIN: "Fenster minimieren",

RESTORE_WIN: "Fenster wiederherstellen",
MAXIMIZE_WIN: "Fenster maximieren",
CLOSE_WIN: "Fenster

schliessen"
t
bi

So, we have two locales with translations per term. We will inject the dictionary as a
dependency into our I18n service:

./Jjs/Service/I18n.]js

YV

constructor (dictionary){
super () ;
this.dictionary = dictionary;

this._locale = "en-US";

}

translate(token, defaultValue) {

[70]

Creating a File Explorer with NW.js — Enhancement and Delivery

const dictionary =

this.dictionary[this._locale];
return dictionary[token] || defaultValue;

}
/.

We also added a new method, translate, that accepts two parameters: token and default
translation. The first parameter can be one of the keys from the dictionary, such as NAME.
The second one is guarding value for the case when the requested token does not yet exist
in the dictionary. Thus, we still get a meaningful text, at least in English.

Let's look at how we can use this new method:

./Jjs/View/FileList.]js

/).
update (collection) {
this.el.innerHTML = "<1i class="file-list_ 1i file-1list_ _head">
${this.il8n.translate("NAME",
"Name") }
${this.il8n.translate("SIZE", "Size"
) }
<span

class="file-1list__ 1i_ time">${this.il8n.translate("MODIFIED", "Modified"
) }
</1li>";

VA

We change the hardcoded column titles in the FileList view with calls for the t ranslate
method of the I18n instance, which means that every time the view updates, it receives the
actual translations. We shall not forget about the TitleBarActions view where we have
windowing action buttons:

./Jjs/View/TitleBarActions. Js

constructor (boundingEl, i18nService) {
this.i18n = il18nService;
/).

// Subscribe on

il18nService updates
il8nService.on("update", () => this.translate());

}

[71]

Creating a File Explorer with NW.js — Enhancement and Delivery

translate () {

this.unmaximizeEl.title = this.il8n.translate("RESTORE_WIN", "Restore
window");
this.maximizeEl.title =

this.il8n.translate("MAXIMIZE_WIN", "Maximize window");
this.minimizeEl.title = this.il8n.translate(

"MINIMIZE_WIN", "Minimize window");
this.closeEl.title = this.il8n.translate("CLOSE_WIN", "Close window");

Here we add the t ranslate method, which updates button-title attributes with the actual
translations. We subscribe for the i18n update event to call the method every time a user
changes the locale:

File Explorer

Dateiname Gréfe Gedndert am ninimieren

™ assots icon-16x16.png 1.06 KB 20.3.2017, 12:30:21

icon-32x32.png 1.35 KB 20.3.2017, 12:30:21

™ node_modules icon-32x32@2x.png 12.58 KB 20.3.2017, 12:30:21
™ tests icon-48x48.png 1.63 KB 20.3.2017, 12:30:21
index.html 1.52 KB 13.3.2017, 09:18:.07
package.json 637 B 20.3.2017, 12:30:21

File Explorer

[72]

Creating a File Explorer with NW.js — Enhancement and Delivery

Context menu

Well, with our application, we can already navigate through the filesystem and open files,
yet one might expect more of a File Explorer. We can add some file-related actions, such as
delete and copy/paste. Usually, these tasks are available via the context menu, which gives
us a good opportunity to examine how to make it with Nw. js. With the environment
integration API, we can create an instance of system menu
(http://docs.nsz.io/en/latest/References/Menu/)fThen,WKBGanOSGOkaiS
representing menu items and attach them to the menu instance
(http://docs.nwjs.io/en/latest/References/Menultem/). This menu can be shown in an
arbitrary position:

const menu = new nw.Menu (),
menutItem = new nw.Menultem ({
label: "Say hello",

click: () => console.log("hello!")
)i

menu.append(menu);
menu.popup (10, 10);

Yet, our task is more specific. We have to display the menu on the right-click in the position
of the cursor, that is, we achieve it by subscribing a handler to contextmenu DOM event:

document .addEventListener ("contextmenu", (e) => {
console.log("~Show menu in position ${e.x}, ${e.y}"’

)i

F) i

Now, whenever we right-click within the application window, the menu shows up. It's not
exactly what we want, is it? We need it only when the cursor resides within a particular
region, for instance, when it hovers a file name. This means that we have to test whether the
target element matches our conditions:

document .addEventListener ("contextmenu", (e) => {
const el = e.target;
if (el instanceof

HTMLElement && el.parentNode.dataset.file) {
console.log("Show menu in position ${e.x}, ${e.v});

[73]

Creating a File Explorer with NW.js — Enhancement and Delivery

Here, we ignore the event until the cursor hovers over any cell of the file table row, given
that every row is a list item generated by the FileList view and therefore provided with a
value for a data file attribute.

This passage pretty much explains how to build a system menu and how to attach it to the
file list. However, before starting on a module capable of creating a menu, we need a service
to handle file operations:

./Jjs/Service/File.]js

const fs = require("fs"),
path = require("path"),
// Copy file helper
cp = (

from, toDir, done) => {
const basename = path.basename(from),
to = path.join(

toDir, basename),
write = fs.createWriteStream(to) ;

fs.createReadStream(from

.pipe(write);

write
.on("finish", done);

}i

class FileService {

constructor (dirService){
this.dir = dirService;

this.copiedFile = null;

}

remove (file) {
fs.unlinkSync(this.dir.getFile(file));
this.dir.notify();

}

paste () {
const file = this.copiedFile;
if (

[74]

Creating a File Explorer with NW.js — Enhancement and Delivery

fs.lstatSync(file).isFile ()){
cp(file, this.dir.getDir (), () => this.dir.notify());
t

copy (file){
this.copiedFile = this.dir.getFile(file);
t

open(file

) A
nw.Shell.openltem(this.dir.getFile(file));

t
showInFolder (file){

nw.Shell.showItemInFolder(this.dir.getFile(file));
t
bi

exports.FileService =
FileService;

What's going on here? FileService receives an instance of DirService as a constructor
argument. It uses the instance to obtain the full path to a file by name
(this.dir.getFile(file)).Italso exploits the notify method of the instance to
request all the views subscribed to Dirservice to update. The showInFolder method
calls the corresponding method of nw. shell to show the file in the parent folder with the
system file manager. As you can recon, the remove method deletes the file. As for
copy/paste, we do the following trick. When the user clicks on copy, we store the target file
path in the copiedFile property. So, when the user clicks on paste the next time, we can
use it to copy that file to the supposedly changed current location. The open method
evidently opens the file with the default associated program. That is what we do in the
FileList view directly. Actually, this action belongs to FileService. So, we adjust the
view to use the service:

./Jjs/View/FileList.]js

constructor (boundingEl, dirService, i18nService, fileService){

this.file = fileService;
/]
}
bindUi () {
Y

[75]

Creating a File Explorer with NW.js — Enhancement and Delivery

this.file.open(el.dataset.file);
Y
t

Now, we have a module to handle the context menu for a selected file. The module will
subscribe for the contextmenu DOM event and build a menu when the user right-clicks on
a file. This menu will contain Show Item in the Folder, Copy, Paste, and Delete. Copy and
Paste are separated from other items with delimiters, and Paste will be disabled until we
store a file with Copy:

./Jjs/View/ContextMenu. Js

class ConextMenuView {
constructor (fileService, il1l8nService){
this.file = fileService;

this.il1l8n = il18nService;
this.attach();

}
getItems (fileName) {
const file =

this.file,
isCopied = Boolean(file.copiedFile);

return [

{
label: this.il8n.translate("SHOW_FILE_IN_FOLDER", "Show Item in the

Folder"),
enabled: Boolean(fileName),

click: () => file.showInFolder(fileName)
I
{

type: "separator"

Hy
{
label: this.il8n.translate("COPY", "Copy"),

enabled: Boolean (

fileName),
click: () => file.copy(fileName)
}I
{

[76]

Creating a File Explorer with NW.js — Enhancement and Delivery

label:

this.il8n.translate("PASTE", "Paste"),
enabled: isCopied,

click: () => file.paste()
}I
{

type: "separator"
}I

label:

this.il8n.translate("DELETE", "Delete"),
enabled: Boolean(fileName),
click: () =>

file.remove (fileName)
}
17

render (fileName) {
const menu = new

nw.Menu () ;
this.getItems(fileName).forEach((item) => menu.append(new
nw.Menultem(item)));

return menu;

}
attach () {
document .addEventListener ("contextmenu", (e) => {

const el = e.target;

if (!'(el instanceof HTMLElement)) {

return;
}
if (el.classList.contains("file-1list")) {

e.preventDefault () ;
this.render ()

.popup (e.x, e.y);
}
// If a child of an element matching [data-file]

[77 1

Creating a File Explorer with NW.js — Enhancement and Delivery

if |

el.parentNode.dataset.file) {
e.preventDefault () ;
this.render (el.parentNode.dataset.file)

.popup(e.x, e.y);

exports.ConextMenuView = ConextMenuView;

So, in the ConextMenuView constructor, we receive instances of FileService and
I18nService. During the construction, we also call the at tach method, which subscribes
for the contextmenu DOM event, creates the menu, and shows it in the position of the
mouse cursor. The event gets ignored unless the cursor hovers over a file or resides in the
empty area of the file list component. When the user right-clicks on the file list, the menu
still appears, but with all items disabled except Paste (in case a file was copied before).
Method render to create an instance of the menu and populates it with nw.MenuItems
created by the get Items method. The method creates an array representing menu items.
Elements of the array are object literals. The 1abel property accepts translation for item
captions. The enabled property defines the state of an item depending on our cases
(whether we hold the copied file or not). Finally, the c1ick property expects the handler for
the click event.

Now we need to enable our new components in the main module:

./Jjs/app.js
const { FileService } = require("./js/Service/File"),
{ ConextMenuView } = require
"./js/View/ConextMenu"),
fileService = new FileService(dirService);

new FileListView (
document .querySelector ("[data-bind=fileList]"), dirService, il18nService,
fileService);

new ConextMenuView (

fileService, il8nService);

[78]

Creating a File Explorer with NW.js — Enhancement and Delivery

Now, let's run the application, right-click on a file, and voila! We have the context menu
and new file actions:

D File Explorer

/home/sheiko/Sandbox

. Name Size Modified
™ quiz bar.txt 6.49 KB 3MTI2017, 16:05:13
; 1.79 KB 31712017, 13:42:23
Show Item in the Folder
Copy 9.46 KB 311772017, 16:04:25
Delete
File Explorer & English ~

System clipboard

Usually, the copy/paste functionality involves system clipboard. Nw. js provides an API to
control it (http://docs.nwis.io/en/latest/References/Clipboard/). Unfortunately, it's
quite limited; we cannot transfer an arbitrary file between applications, which you may
expect of a file manager. Yet, some things are still available to us.

Transferring text

In order to examine text transferring with the clipboard, we modify the method copy of
FileService:

copy (file){
this.copiedFile = this.dir.getFile(file);

[79]

Creating a File Explorer with NW.js — Enhancement and Delivery

const clipboard = nw.Clipboard.get ();

clipboard.set (this.copiedFile, "text");
}

What does it do? As soon as we obtain the file full path, we create an instance of
nw.Clipboard and save the file path there as text. So now, after copying a file within the
File Explorer, we can switch to an external program (for example, a text editor) and paste
the copied path from the clipboard:

| Paste

Paste Special >

Character...

Paragraph...

Bullets and Numbering...
Page...

Edit Style...

Transferring graphics

It doesn't look very handy, does it? It would be more interesting if we could copy/paste a
file. Unfortunately, Nw. js doesn't give us many options when it comes to file exchange.
However, we can transfer PNG and JPEG images between the Nw. js application and
external programs:

./Jjs/Service/File.]js

/]
copyImage (file, type){
const clip = nw.Clipboard.get (),
// load file content

as Base64
data = fs.readFileSync(file).toString("base64"),
// image as HTML

html = ‘";

[80]

Creating a File Explorer with NW.js — Enhancement and Delivery

// write both options

(raw image and HTML) to the clipboard
clip.set ([
{ type, data: data, raw: true },
{ type:

"html", data: html }
1)
}
copy (file){
this.copiedFile = this.dir.getFile(

file);
const ext = path.parse(this.copiedFile).ext.substr(1);
switch (ext){
case
lljpgll .

case "Jjpeg":

return this.copyImage(this.copiedFile, "jpeg");
case "png":

return this.copyImage(this.copiedFile, "png");

}
/]

We extended our FileService with the copyImage private method. It reads a given file,
converts its contents in Base64 and passes the resulting code in a clipboard instance. In
addition, it creates HTML with an image tag with the Base64-encoded image in the data
Uniform Resource Identifier (URI). Now, after copying an image (PNG or JPEG) in File
Explorer, we can paste it in an external program, such as the graphical editor or text
processor.

Receiving text and graphics

We've learned how to pass text and graphics from our Nw. js application to external
programs, but how can we receive data from outside? As you can guess, it is accessible
through the get method of nw.Clipboard. Text can be retrieved as follows:

const clip = nw.Clipboard.get();
console.log(clip.get ("text"));

[81]

Creating a File Explorer with NW.js — Enhancement and Delivery

When the graphic is put on the clipboard, we can get it with NW.js only as Base64-encoded
content or as HTML. To see it in practice, we add a few methods to FileService:

./js/Service/File.js

/)

hasImageInClipboard() {
const clip = nw.Clipboard.get();
return

clip.readAvailableTypes () .indexOf ("png") !== -1;
}
pasteFromClipboard() {
const clip =

nw.Clipboard.get () ;
if (this.hasImageInClipboard()) {
const base64 = clip.get("png", true),
binary = Buffer.from(base64, "baseb4d"),
filename = Date.now() + "--img.png";

fs.writeFileSync(this.dir.getFile(filename), binary);
this.dir.notify();
}
}
/.

The hasImageInClipboard method checks whether the clipboard keeps any graphics. The
pasteFromClipboard method takes graphical content from the clipboard as a Base64-
encoded PNG; it converts the content into binary code, writes it into a file, and requests
DirService subscribers to update it.

To make use of these methods, we need to edit the ContextMenu view:
./js/View/ContextMenu. js

getItems (fileName) {
const file = this.file,
isCopied = Boolean(file.copiedFile);
return [
/] ..
{
label: this.il8n.translate("PASTE_FROM_CLIPBOARD", "Paste

image from clipboard"),
enabled: file.hasImageInClipboard(),
click: () =>

[82]

Creating a File Explorer with NW.js — Enhancement and Delivery

file.pasteFromClipboard()
b
/...
1i
}

We add anew item, Paste image from clipboard, to the menu, which is enabled only
when there are some graphics in the clipboard.

Menu in the system tray

All three platforms available for our application have a so-called system notification area,
which is also known as the system tray. That's a part of the user interface (in the bottom-
right corner on Windows and top-right corner on other platforms) where you can find the
application icon even when it's not present on the desktop. Using the Nw. js API
(http://docs.nsz.io/en/latest/References/Tray/),VveCarlprOVide(nnfapphcaﬁon
with an icon and drop-down menu in the tray, but we do not have any icon yet. So, I have
created the icon.pngimage with the text Fe and saved it in the application root in the size
of 32x32px. It is supported on Linux, Windows, and macOS. However, in Linux, we can go
with a better resolution, so I have placed the 48x48px version next to it.

Our application in the tray will be represented by TrayService:
./Jjs/View/Tray.]js
const appWindow = nw.Window.get ();

class TrayView {
constructor (title) {

this.tray = null;
this.title = title;
this.removeOnExit () ;
this.render();

}

render () {
const icon = (process.platform === "linux" ? "icon-48x48.png"
"icon-32x32.png");

this.tray = new nw.Tray ({
title: this.title,
icon,

[83]

Creating a File Explorer with NW.js — Enhancement and Delivery

iconsAreTemplates: false

1)

const menu = new nw.Menu () ;
menu.append (new nw.Menultem ({
label: "Exit",

click: () => appWindow.close ()

)i

this.tray.menu = menu;

removeOnExit () {
appWindow.on("close", () => {
this.tray.remove () ;
appWindow.hide () ;

// Pretend to be closed already
appWindow.close (true);
1) i

// do not spawn Tray instances

on page reload
window.addEventListener ("beforeunload", () => this.tray.remove(),
false);

}
}
exports.TrayView = TrayView;

What does it do? The class takes the tray's title as a constructor parameter and calls the
removeOnExit and render methods during instantiation. The first one subscribes for the
window's close event and ensures that the tray is removed when we close the application.
Method render creates the nw. Tray instance. With the constructor argument, we pass the
configuration object with the title, which is a relative path to the icon. We assign it with
icon- 48x48.pngicon for Linux and icon-32x32.png for other platforms. By default,
macOS tries adapting the image to the menu theme, which requires an icon to consist of
clear colors on a transparent background. If your icon doesn't fit these restrictions, you
would rather add it into configuration object property iconsAreTemplates, which is set as
false.

[84]

Creating a File Explorer with NW.js — Enhancement and Delivery

When launching our File Explorer in Ubuntu 16.x, it doesn't appear in the
system tray due to the whitelisting policy. You can fix this by running
sudo apt-get install libappindicatorl in the Terminal.

nw.Tray accepts the nw.Menu instance. So, we populate the menu the same way as we did
for the context menu. Now we just initialize the Tray view in the main module and run the
application:

./js/app.Jjs

const { TrayView } = require("./Jjs/View/Tray");
new TrayView("File Explorer");

If we run the application now we can see the app icon and the menu in the system tray:

<] File Explorer

/home/sheiko/Sites/book/file-explorer/CHZ/func-menu-1

., MName Size Modified

= 5s50ts icon-16x16.png 1.06 KB 3/20/2017, 12:30:21

mjs icon-32x32.png 1.35 KB 32012017, 12:30:21

Ve RS icon-32x32@2x.png 12.58 KB 3120/2017, 12:30:21

™ fests icon-48x48.png 1.63 KB 3/20/2017, 12:30:21
index.html 1.52 KB 3M7/2017, 13:33:43
package.json 637 B 3120/2017, 12:30:21

|
File Explorer @ English ~

Yes, the only menu item exit looks somehow lonely.

[85]

Creating a File Explorer with NW.js — Enhancement and Delivery

Let's extend the Tray view:
./Jjs/View/Tray.]js

class TrayView {
constructor (title){
this.tray = null;
this.title = title;
// subscribe to window events

appWindow.on ("maximize", () => this.render(false));
appWindow.on ("minimize", () => this.render(false));
appWindow.on ("restore", () => this.render(true));

this.removeOnExit () ;
this.render(true);
}
getItems (reset) {

return [
{
label: "Minimize",
enabled: reset,
click: () =>

appWindow.minimize ()
}I
{
label: "Maximize",
enabled: reset,

click: () => appWindow.maximize ()
}I
{
label: "Restore",
enabled:

!reset,
click: () => appWindow.restore ()

}I

{

type: "separator"
b
{

label: "Exit",
click: () => appWindow.close()

[86]

Creating a File Explorer with NW.js — Enhancement and Delivery

1;
}
render (reset){
if (this.tray) {
this.tray.remove () ;

const icon = (process.platform === "darwin" ? "macicon.png"
"icon.png");

this.tray =

new nw.Tray ({
title: this.title,
icon,
iconsAreTemplates: true

P

const menu = new nw.Menu () ;
this.getItems(reset).forEach((item) => menu.append(new
nw.MenuItem (

item)));

this.tray.menu = menu;

}
removeOnExit () {
appWindow.on (

"close", () => {
this.tray.remove();

appWindow.hide(); // Pretend to be closed already

appWindow.close (true);

P

exports.TrayView = TrayView;

[871]

Creating a File Explorer with NW.js — Enhancement and Delivery

Now, the render method receives a Boolean as an argument defining whether the
application window is in the initial mode; that flag gets passed to the new getItems
method that produces an array of menu items meta. If the flag is true, all the menu items are
enabled, except restore. What makes sense is to restore the switches window to the initial
mode after minimizing or maximizing. Seemingly, when the flag is false, the Minimize
and Maximize items are disabled, but how can we know the current mode of the window?
While constructing, we subscribe to window events minimize, maximize, and restore. When
an event happens, we call render with the corresponding flag. Since we can now change
window mode from both the TitleBarActions and Tray views, the toggle method of
TitleBarActions is not a reliable source of window mode anymore. Instead, we rather
refactor the module to rely on window events like we did in the Tray view:
./js/View/TitleBarActions.js

const appWindow = nw.Window.get ();
class TitleBarActionsView {
constructor (

boundingEl, il8nService){
this.il1l8n = il1l8nService;
this.unmaximizeEl = boundingEl.querySelector (

"[data-bind=unmaximize]");
this.maximizeEl = boundingEl.querySelector("[data-bind=maximize]");
this.minimizeEl = boundingEl.querySelector("[data-bind=minimize]");

this.closeEl = boundingEl.querySelector (

"[data-bind=closel");
this.bindUi () ;
// Subscribe on il8nService updates
il8nService.on (

"update", () => this.translate());

// subscribe to window events
appWindow.on ("maximize", ()

=> this.toggleButtons(false));
appWindow.on ("minimize", () => this.toggleButtons(false));
appWindow.on ("restore", () => this.toggleButtons(true));

}

translate () {

this.unmaximizeEl.title = this.il8n.translate("RESTORE_WIN", "Restore
window");

[881]

Creating a File Explorer with NW.js — Enhancement and Delivery

this.maximizeEl.title =

this.il8n.translate("MAXIMIZE_WIN", "Maximize window");
this.minimizeEl.title = this.il8n.translate(

"MINIMIZE_WIN", "Minimize window");
this.closeEl.title = this.il8n.translate("CLOSE_WIN", "Close window"

)

}
bindUi () {
this.closeEl.addEventListener("click", this.onClose.bind(this),
false);
this.minimizeEl.addEventListener ("click", this.onMinimize.bind(this

), false);

this.maximizeEl.addEventListener ("click", this.onMaximize.bind(this),
false);
this.unmaximizeEl.addEventListener ("click", this.onRestore.bind(this),
false);
}
toggleButtons (reset){
this.maximizeEl.classList.toggle("is-hidden", !reset);
this.unmaximizeEl.classList.toggle("is-hidden", reset);
this.minimizeEl.classList.toggle("is-hidden", !reset
)i
}
onRestore(e) |

e.preventDefault () ;
appWindow.restore();
}
onMaximize(e) |
e.preventDefault () ;
appWindow.maximize () ;

onMinimize(e) |
e.preventDefault () ;
appWindow.minimize () ;
}

onClose(e) {

e.preventDefault () ;
appWindow.close();

[891]

Creating a File Explorer with NW.js — Enhancement and Delivery

exports.TitleBarActionsView =
TitleBarActionsView;

This time when we run the application we can find in the system tray application menu
with windowing actions:
1y B #) 1245 (&

Minimize
Mas

File Explorer

file-explorer, unc-menu-2

. Name Size Modific8

o gsc0ts icon-16x16.png 1.06 KB 3/20/2017, 12:30:21

mjs icon-32x32.png 1.35 KB 3/20/2017, 12:30:21

™ node_modules lcon-32x32@2x.png 12.58 KB 3/20/2017, 12:30:21

™ fests icon-48x48.png 1.63 KB 3/20/2017, 12:30:21
index.html 1.52 KB 3/13/2017, 11:26:45
package.json 637 B 3/20/2017, 12:30:21

File Explorer @ English ~

Command-line options

Other file managers usually accept command-line options. For example, you can specify a
folder when launching Windows Explorer. It also responds to various switches. Let's say
that you can give it switch /e, and Explorer will open the folder in expanded mode.

[90]

Creating a File Explorer with NW.js — Enhancement and Delivery

NW. js reveals command-line options as an array of strings in nw.2App.argv. So, we can
change the code of the DirService initialization in the main module:

./js/app.Js
const dirService = new DirService(nw.App.argv|[0]);

Now, we can open a specified folder in the File Explorer straight from the command line:
npm start ~/Sandbox

In UNIX-based systems, the tilde means user home directory. The equivalent in Windows
will be as follows:

npm start %USERPROFILE%Sandbox

What else can we do? Just for a showcase, I suggest implementing the ~—-minimize and —-
maximize options that switch the application window mode on startup, respectively:
./js/app.Jjs

const argv = require("minimist") (nw.App.argv),
dirService = new DirService(argv._[0 1);
if (argv.maximize) {
nw.Window.get () .maximize () ;
¥
if (argv.minimize) {
nw.Window.get () .minimize () ;

}

It doesn't make any sense to parse nw.App.argv array manually when we can use an
external module minimist (https://www.npmjs.com/package/minimist). It exports a
function that collects all the arguments that are not options or associated with options into
the _ (underscore) property. We expect the only argument of that type, which is startup
directory. It also sets the maximize and minimize properties to true when they are
provided on the command line.

One should note that NPM doesn't delegate options to the running script, so we shall call
the NW. js executable directly:

nw . ~/Sandbox/ —--minimize
or

nw . ~/Sandbox/ ——maximize

[91]

Creating a File Explorer with NW.js — Enhancement and Delivery

Native look and feel

Nowadays, one can find plenty of native desktop applications with semi-transparent
background or with round corners. Can we achieve such fancy look with Nw. js? Sure we
can! First, we shall edit our application manifest file:

./package. json

"window": {

"frame": false,
"transparent": true,

o

By setting the frame field to false, we instruct Nw. js to not show the window frame, but
its contents. Fortunately, we have already implemented custom windowing controls as the
default ones will not be available anymore. With a transparent field, we remove the opacity
of the application window. To see it in action, we edit the CSS definitions module:

./assets/css/Base/definitions.css

:root {
-—-titlebar-bg-color: rgba (45, 45, 45, 0.7);
——titlebar-fg-color: #dcdcdc;
——dirlist-—

bg-color: rgba (222, 222, 222, 0.9);
——-dirlist-fg-color: #636363;
—-—filelist-bg-color: rgba (249, 249, 249,

0.9);
——filelist-fg-color: #333341;
——dirlist-w: 250px;
—-—titlebar-h: 40px;
——footer-h:

40px;
-—-footer-bg-color: rgba (222, 222, 222, 0.9);
—-—-separator—-color: #2d2d2d;
--border-radius:

lem;

}

[92]

Creating a File Explorer with NW.js — Enhancement and Delivery

With RGBA color function, we set the opacity of the title bar to 70% and other background
colors to 90%. We also introduce a new variable, —~—border—-radius, which we will use in
the titlebar and footer components to make round corners on the top and in the
bottom:

./assets/css/Component/titlebar.css

.titlebar {
border—-radius: var (—--border-radius) var (--border-radius) 0 0;

}
./assets/css/Component/footer.css

.footer {
border-radius: 0 0 var (—--border-radius) var (-—border-radius);

}
Now we can launch the application and enjoy our renewed fancy look.

On Linux, we need to use the nw . —--enable-transparent-visuals
--disable-gpu command-line option to trigger transparency.

Source code protection

Unlike in native applications, our source code isn't compiled and is therefore open to
everybody. If you have any commercial use of this fact in mind, it is unlikely to suit you.
The least you can do is to obfuscate the source code, for example, using Jscrambler
(https://jscrambler.com/en/). On the other hand, we can compile our sources into native
code and load it with NW. js instead of JavaScript. For that, we need to separate JavaScript
from the application bundle. Let's create the app folder and move everything except js
there. The js folder will be moved into a newly created directory, src:

F— app
|
L— assets
| L— css
| — Base
L

[93]

Creating a File Explorer with NW.js — Enhancement and Delivery

Component
L— src

L—

js
— Dpata
F__

Service
L— view

Our JavaScript modules are now out of the project scope, and we cannot reach them when
required. However, these are still Node.js modules (https://nodejs.org/api/modules.ht
m1) that confront CommonJS module definition standards. Therefore, we can merge them,
with a bundler tool, into a single file that we later compile into native code. I suggest going
with Webpack (https://webpack.github.io/), the seemingly most popular bundler
nowadays. So, we place it in the root directory webpack configuration file with the
following contents:

webpack.config.js

const { join } = require("path"),
webpack = require("webpack");
module.exports = {
entry: join(__dirname, "src/js/app.js"),
target: "node-webkit",
output: {

path: join(

__dirname, "/src/build"),
filename: "bundle.js"
}
bi

With this, we instruct Webpack to transpile all the required modules, starting with
src/js/app.Js, into asingle src/build/bundle. js file. However, Webpack, unlike
NW. js, expects the required dependencies relative to the hosting file (not project root); so,
we have to remove js/ from the file paths in the main module:

./src/js/app.]s

// require("./js/View/LangSelector") becomes
require("./View/LangSelector")

[94]

Creating a File Explorer with NW.js — Enhancement and Delivery

For both transpiling CommonJS modules and compiling the derived file in the native code,
we need a few tasks in the script field of the manifest:

package. json

VA
"scripts": {
"build:js": "webpack",
"protect:js": "node_modules/nw/nwijs/nwijc

src/build/bundle.js app/app.bin",
"build": "npm run build:js && npm run protect:js",
/e
o
/.

With the first task, we make webpack build our JavaScript sources into a single file. The
second one compiles it using the Nw. js compiler. The last one does both at once.

In the HTML file, we replace the code calling the main module with the following lines:
app/index.html

<script>
nw.Window.get () .evalNWBin (null, "./app.bin");
</script>

Now we can run the application and observe that the implemented functionality still
confronts our requirements.

Packaging

Well, we have completed our application and that is the time to think about distribution. As
you understand, asking our users to install Node . js and type npm start from the
command line will not be friendly. Users will expect a package that can be started as simply
as any other software. So, we have to bundle our application along with Nw. js for every
target platform. Here, nwjs-builder comes in handy
(https://github.com/evshiron/nwjs-builder).

So, we install the npm i -D nwjs-builder tool and add a task to the manifest:
./package. json

VA

"scripts": {

[95]

Creating a File Explorer with NW.js — Enhancement and Delivery

"package": "nwb nwbuild -v 0.21.3-sdk ./app -o ./dist -p linux64,
win32,o0sx64",

/]
}I
/...

Here, we specified three target platforms (-p 1inux64, win32, osx64) atonce and thus,
after running this task (npm run package), we get platform-specific subfolders in the dist
directory, containing other executable things named after our application:

dist
F— file-explorer-linux-x64
\ L— file-explorer

— file-explorer—osx-x64
| L— file-explorer.app
L— file-explorer-win-x64

L— file-explorer.exe

Nwjs-builder accepts diverse options. For example, we can request it to output the
packages as ZIP archives:

nwb nwbuild -v 0.21.3-sdk ./app -o ./dist —--output-format=ZIP

Alternatively, we can make it run the package after the build process with the given
options:

nwb nwbuild -v 0.21.3-sdk ./app -o ./dist -r -- -—-enable-transparent-
visuals --disable—-gpu

Autoupdate

In the era of continuous deployment, new releases are issued pretty often. As developers,
we have to ensure that users receive the updates transparently, without going through the
download/install routine. With the traditional web application, it's taken for granted. Users
hit the page and the latest version gets loaded. With desktop applications, we need to
deliver the update. Unfortunately, Nw. js doesn't provide any built-in facilities to handle
autoupdates, but we can trick it; let's see how.

[961]

Creating a File Explorer with NW.js — Enhancement and Delivery

First of all, we need a simple release server. Let's give it a folder (for example, server) and
create the manifest file there:

./server/package.json

{
"name": "release-server",
"version": "1.0.0",
"packages": {
"linux64": {
"url": "http://localhost:8080/releases/file-explorer-linux-—
x64.zip",
"size": 98451101
}
}I
"scripts": {
"start": "http-server ."
}
}

This file contains a packages custom field, describing the available application releases.
This simplified implementation accepts only the latest release per platform. The release
version must be set in the manifest version field. Every entry of package objects contains a
downloadable URL and the package size in bytes.

To serve HTTP requests for this manifest and packages in the release folder, we will use
the HTTP server (https://www.npmjs.com/package/http-server). So, we install the
package and start the HTTP server:

npm i -S http-server
npm start

Now, we will jump back to our client and modify the application manifest file:
./client/package. json

{

"name": "file-explorer",
manifestUrl": "http://127.0.0.1:8080/package.json",
"scripts": {
"package": "nwb nwbuild -v 0.21.3-sdk . -o ../server/releases ——output-—
format=zIP",
"postversion": "npm

run package"

[97]

Creating a File Explorer with NW.js — Enhancement and Delivery

}I
/]
}

Here, we add a custom field, manifestUrl, with a URL to the server manifest. After we
start the server, the manifest will be available at

http://127.0.0.1:8080/package. json. We instruct nwjs-builder to paCk
application bundles with ZIP and place them in . . /server/release. Eventually, we set
the postversion hook; so, when bumping the package version (for example, npm
version patch) NPM will automatically build and send a release package to the server,
every time.

From the client, we can read the server manifest and compare it with the application. If the
server has a newer version, we download the release package matching our platform and
unpack it in a temporary directory. What we need to do now is just replace the running
application version with the downloaded one. However, the folder is locked until the app is
running, so we close the running application and start the downloaded one (as a detached
process). It backs up the old version and copies the downloaded package to the initial
location. All that can be easily done using nw— autoupdater
(https://github.com/dsheiko/nw-autoupdater), so we install the npm i -D nw-
autoupdater package and create a new service to handle the autoupdate flow:

./client/js/Service/Autoupdate.ijs

const AutoUpdater = require("nw-autoupdater"),
updater = new AutoUpdater (nw.App.manifest);

async function start(el){

try {
// Update copy is running to replace app with the update
if
(updater.isSwapRequest ()) {
el.innerHTML = " Swapping... ;

await updater.swap();

el.innerHTML = "Restarting...’;
await updater.restart ();
return;
}
//

Download/unpack update if any available
const rManifest = await updater.readRemoteManifest ();

[981]

Creating a File Explorer with NW.js — Enhancement and Delivery

const
needsUpdate = await updater.checkNewVersion(rManifest);
if ('needsUpdate) {
return;
}
if ('confirm("New release is available. Do you want to upgrade?"))
{
return;
}

// Subscribe for progress events
updater.on("download", (downloadSize, totalSize) => {

const procent = Math.floor(downloadSize / totalSize * 100);
el.innerHTML = ‘Downloading - ${procent}%";
)i
updater.on("install", (installFiles, totalFiles) => {
const procent = Math.floor (

installFiles / totalFiles * 100);

el.innerHTML = "Installing - ${procent}%$’;
}) i
const updateFile = await updater.download(rManifest);

await updater.unpack(updateFile);

await updater.restartToSwap();
} catch (e) {
console.error(e);

exports.start = start;

[991]

Creating a File Explorer with NW.js — Enhancement and Delivery

Here, we applied the async/await syntax of ES2016. By prefixing the function with async,
we state that it is asynchronous. After that, we can use await in front of any Promise
(https://mzl.la/1jLTOHB) to receive its resolved value. If Promise rejects it, the
exception will be caught in the try/catch statement.

What exactly does the code do? As we agreed, it compares local and remote manifest
versions.

If release server has the newer version, it informs the user using the JavaScript confirm
function. If the user is positive on upgrading, it downloads the latest release and unpacks it.
While downloading and unpacking, the updater object emits the corresponding messages;
so, we can subscribe and represent the progress. When ready, the service restarts the
application for swapping; so, now it replaces the outdated version with the downloaded
one and restarts again. On the way, the service reports to the user by writing in the passed-
in HTML element (el). By the design it expects the element representing the path container
in the title bar.

So, we can now enable the service in the main module:

./client/js/app.Jjs

const { start } = require("./Jjs/Service/Autoupdate"),
// start autoupdate

setTimeout (() => {

start (document.querySelector ("[data-bind=path]"));
b, 500);

Well, how do we test it? We jump to client folder and build a distribution package:

npm run package

Supposedly, it lands in server/releases. We unpack to the arbitrary location, for example,
~/sandbox/:

unzip ../server/releases/file-explorer-linux-x64.zip -d ~/sandbox/
P P P

Here, we will find the executable (for Linux, it will be file-explorer) and run it. The File
Explorer will work as usual because the release server doesn't have a newer version, so we
go back to the client folder and create one:

npm version patch

[100]

Creating a File Explorer with NW.js — Enhancement and Delivery

Now we switch to the server folder and edit the version of the manifest to match the just-

generated one (1.0.1).

Then, we restart the bundled app (for example, ~/sandbox/file-explorer) and observe

the prompt:

tmp/_io.nwjs e9uHFX

L%
B gssels
[| is

B node_modules

Name

icon-16x16.png

icon-32x32.png

icon-32x32@2x.png

icon-4Rx48 nnn

ing

pa

Size

1.06 KB

1.35 KB

12.58 KB

1 A3 KR

New release is available. do you want to upgrade?

Cancel

OK

x

Modified

3/31/2017, 17:07:52
3/31/2017, 17:07:52
3/31/2017, 17:07:52
3/31/2017, 17:07:52
3/31/2017, 17.07:52

31312017, 17.07:52

File Explorer

@ English ~

[101]

Creating a File Explorer with NW.js — Enhancement and Delivery

After clicking on OK, we see the progress on downloading and installing in the title bar:

Installing - 95%

[Name Size Modified

m 5550(s icon-16x16.png 1.06 KB 3/31/2017, 17.07:52

mjs icon-32x32.png 1.35KB 3/31/2017, 17:07:52

™ node_modules icon-32x32@2x.png 1258 KB 3/31/2017,17:07:52
lcon-48x48.png 1.63 KB 3/31/2017, 17:07:52
index.html 1.53 KB 33112017, 17.07:52
package.json 910 B 3131/2017, 17:07:52

File Explorer @ English ~

Then, the application restarts and reports swapping. When done, it restarts again, now
updated.

Summary

In the beginning of this chapter, our File Explorer could only navigate the filesystem and
open files. We extended it to show a file in the folder, and to copy/paste and delete files. We
exploited the Nw. js API to provide the files with the dynamically-built context menu. We
learned to exchange text and images between applications using system clipboard. We
made our File Explorer support diverse command-line options. We provided support for
internalization and localization, and examined the protection of the sources through
compilation in the native code. We went through the packaging process and prepared for
distribution. Finally, we set up a release server and extended the File Explorer with a
service for autoupdating.

[102]

Creating a Chat System with
Electron and React — Planning,
Designing, and Development

In the previous chapters, we worked with NW js. It's a great framework, but not the only
one on the market. Its counterpart Electron isn't inferior to NW.js in feature set and has an
even larger community. To make the right choice of what fits best, I assume that one has to
try both frameworks. So, our next example application will be a simple chat system and we
will do it with Electron. We made the file explorer in plain JavaScript. We had to take care
of abstractions consistency, data binding, templating, and such. In fact, we can delegate
these tasks to a JavaScript framework. At the time of writing, the three solutions--React,
Vue, and Angular--head the short list, where React seems like the most trending. I find it as
a best fit for our next application. So, we will look into the essentials of React. We will set up
Electron and webpack for our React-based application. We will not write all the CSS styles
manually this time, but will use PhotonKit markup components. Finally, we will build the
chat static prototype using React components and get ready to make it functional.

Application blueprint

In order to describe our application requirements, the same as previously, we start with
user stories:

¢ Asa user, I can introduce myself to the chat

e As auser, I can see real time the list of chat participants

e As a user, I can enter and submit a message

e As a user, I can see messages of chat participants as they are coming

Creating a Chat System with Electron and React — Planning, Designing, and Development

If putting it onto wireframes, the first screen will be a simple prompt for a username:

———
-0OX

Tell me your name

]Jon

Chat v.1.0.0

The second screen contains a sidebar with participants and the main area with the
conversation thread and a form to submit a message:

—
-0OX
2 Jon Ygritte: 12:05:20 PM
Joined 3 minutes ago | o, hundreds X-(
1 Ygritte
Joined 2 minutes ago |Jon: 12:05:10 PM

Why are you weeping? It was only a song. There are hundreds of giants,
I've Just seen them

You know nothing, Jon Snow...

Chatv.1.0.0

[104]

Creating a Chat System with Electron and React — Planning, Designing, and Development

The second screen shares header and footer with the first one, but the main section consists
of a participant list (on the left) and chat pane (on the right). The chat pane comprises
incoming messages and submission form.

Electron

We have already become acquainted with NW js. As you likely know, there is an alternative
to it called Electron (https://electron.atom.io/). By and large, both provide comparable
feature sets (http://bit.ly/28Nw0ix). On the other hand, we can observe that Electron has
a larger and much more active community (https://electron.atom.io/community/).

Electron is also known to be the GUI framework behind notable open source projects, such
as Visual Studio Code (https://code.visualstudio.com/) and Atom IDE
(https://atom.io/).

From a developer perspective, the first difference one faces is that Electron's entry point is a
JavaScript, unlike HTML in NW.js. As we launch an Electron application, the framework
runs first the specified script (main process). The script creates the application window.
Electron provides API split in modules. Some of them are available only for the main
process, some for renderer processes (any scripts requested from web pages originated by
the main script).

Let's put this into practice. First of all, we will create the . /package. json manifest file:

{
"name": "chat",
"version": "1.0.0",
"main": "./app/main.js",
"scripts": {
"start": "electron ."
}I
"devDependencies": {
"devtron": "*1.4.0",
"electron": ""1.6.2",
"electron—-debug": "*1.1.0"
}
}

On the whole, this manifest doesn't differ much from the one we created in previous
chapters for NW. js. Yet, we do not need the window field here and field main points at the
main process script.

[105]

Creating a Chat System with Electron and React — Planning, Designing, and Development

As for dependencies, we obviously need electron, and in addition, we will use the
electron-debug package, which activates hotkeys F12 and F5 for DevTools and reload,
respecﬁvebl(https://github.com/sindresorhus/electronfdebug).VVeiﬂSOinCthe
Electron's DevTools Extension, called Devtron (https://electron.atom.io/devtron).

Now, we can edit the main process script:

./app/main.js

const { app, BrowserWindow } = require("electron"),
path = require("path"),
url = require("url");

let mainWindow;

Here, we import app and BrowserWindow from the electron module. The first one allows
us to subscribe to application lifecycle events. With the second, we create and control the
browser window. We also obtain references to NPM modules path and url. The first helps
to create platform-agnostic paths and the second helps in building a valid URL. In the last
line, we declare a global reference for the browser window instance. Next, we will add a
function that creates the browser window:

function createWindow () {
mainWindow = new BrowserWindow ({

width: 1000, height: 600

)i

mainWindow.loadURL (url.format ({
pathname: path.join(__dirname, "index.html"),
protocol: "file:",
slashes: true

P)i

mainWindow.on ("closed", () => {
mainWindow = null;
)i
}

Actually, the function just creates a window instance and loads index.html in it. When the
window is closed, the reference to the window instance gets destroyed. Further, we
subscribe for application events:

app.on("ready", createWindow);
app.on("window-all-closed", () => {
if (process.platform !== "darwin") {

[106]

Creating a Chat System with Electron and React — Planning, Designing, and Development

app.quit () ;
}
P

app.on("activate", () => {
if (mainWindow === null) {
createWindow () ;
t
)i

The application event "ready" is fired when Electron finishes initialization; then we create
the browser window.

The window-all-closed event is emitted when all the windows are closed. For any
platform but macOS, we quit the application. OS X applications usually stay active until the
user quit explicitly.

The activate event gets triggered only on macOS. In particular, it happens when we click
on the application's dock or taskbar icon. If no window exists at that moment, we create a
new one.

Finally, we call electron-debug to activate the debug hotkeys:

require("electron-debug") ();
If we launch Electron now, it will try loading index.html, which we have to create first:
./app/index.html

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Hello World!</title>
</head>
<body>

<li id="app"></1li>
<li id="os"></1li>
<li id="electronVer"></1li>

</body>
<script src="./renderer.js"></script>
</html>

[107]

Creating a Chat System with Electron and React — Planning, Designing, and Development

Nothing exciting is happening here. We just declared several placeholders and loaded a
renderer process script:

./app/renderer. js

const manifest = require("../package.json");

const platforms = {
win32: "Windows",
darwin: "macOS",
linux: "Linux"

bi

function write(id, text){
document .getElementById(id) .innerHTML = text;

}

write("app", 'S${manifest.name} v.${manifest.version});
write("os", ‘Platform: ${platforms[process.platform]});
write("electronVer", ‘Electron v.S${process.versions.electron}’);

In the renderer script, we read package. json into the manifest constant. We define a
dictionary object to map the process.platformkeys to meaningful platform names. We
add a helper function, write, which assigns a given text to the element matching the given
ID. Using this function, we populate the placeholders of the HTML.

At this point, we are expected to have the following file structure:

— app
F— index.html
main.js
I j

| L— renderer.is
F—— node_modules
L— package.json

[108]

Creating a Chat System with Electron and React — Planning, Designing, and Development

Now, we install dependencies (npm i) and run the (npm start)example. We will see the
following window:

0 Hello world!

e chat v.1.0.0
« Platform: Linux
« Electron v.1.6.2

React

React is gaining momentum. It is the most trending technology, according to the 2016 Stack
Overflow developer survey (http ://stackoverflow.com/insights/survey/2016#techno
logy). It is interesting to note that React is not even a framework. It's a JavaScript library for
building user interfaces--very clean, concise, and powerful. The library implements the
component-driven architecture. So, we create components (reusable, composable, and
stateful units of UI) and then use them like Lego blocks to construct the intended UL React
treats the derived structure as an in-memory DOM representation (virtual DOM). As we
bind it to the real DOM, React keeps both in sync, meaning that whenever any of its
components change their states, React immediately reflects the view changes in the DOM.

Besides that, we can convert virtual DOM in the HTML string
(http://bit.ly/20Vsjvn) on the server side and send it with an HTTP
response. The client side will automatically bind to the already existing
HTML. Thus, we speed up page loading and allow search engines to crawl
the content.

[109]

Creating a Chat System with Electron and React — Planning, Designing, and Development

In a nutshell, the component is a function that takes in given properties and returns an
element, where an element is a plain object representing a component or a DOM node.
Alternatively, one can use a class extending React . Component, whose render method
produces the element:

- DIV

ReactDOM .render(
<ComponentFoo />, DOMNode)

{
ComponentFoo EEals

To create an Element, one can go with the APIL. Yet, nowadays, as a rule, it's not used
directly, but via syntactic sugar known as JSX. JSX extends JavaScript with a new type that
looks like an HTML template:

const name = "Jon", surname = "Snow";
const element = <header>

<hl>{name + " " 4+ surname}</hl>
</header>;

Basically, we write HTML straight in JavaScript and JavaScript in HTML. JSX can be
translated to plain JavaScript using the Babel compiler with preset react
(https://babeljs.io/docs/plugins/preset-react/).

Most of the modern IDEs support JSX syntax from the box.

[110]

Creating a Chat System with Electron and React — Planning, Designing, and Development

To have a better understanding, we fiddle a bit with React. A function-based component
might look like this:

function Header (props){
const { title } = props;
return (
<header>
<hl>{title}</h1>
</header>
)
}

So, we declare a Header component that generates an element representing a header with a
heading populated from the tit1le property. We can also go with a class. Thus, we can
encapsulate component-related methods in the class scope:

import React from "react";

class Button extends React.Component {
onChange () {
alert ("Clicked!"™);
}

render () {
const { text } = this.props;
return <button onChange={this.onChange.bind(this)} >{text}</button>;
}
}

This component creates a button and provides it with a minimalistic functionality (when the
button is clicked, we get an alert box with the Clicked! text).

Now, we can attach our components to the DOM, as follows:
import ReactDOM from "react-dom";

ReactDOM. render (<div>
<Header />
<Button text="Click me" />
</div>, document.querySelector ("#app"));

[111]

Creating a Chat System with Electron and React — Planning, Designing, and Development

As you can note, components imply a unidirectional flow. You can pass properties from
parent to child, but not otherwise. Properties are immutable. When we need to
communicate from a child, we lift the state up:

import React from "react";
class Item extends React.Component {
render () {

const { onSelected, text } = this.props;
return <li onClick={onSelected(text) }>{text}</1li>;

}
class List extends React.Component {
onltemSelected(name) {
// take care of

}

render () {

const names = ["Gregor Clegane", "Dunsen", "Polliver"];
return <nav>
{names.map ((name) => {

return <Item name={name} onSelected={this.onItemSelected.bind/(
this)} />;
)}

</nav>;

}

In the render method of the List component, we have an array of names. Using the map
array prototype method, we iterate through the name list. The method results in an array of
elements, which JSX accepts gladly. While declaring Item, we pass in the current name and
onItemSelected handler bound to the list instance scope. The Item component renders
<1i> and subscribes the passed-in handler to click events. Therefore, events of a child
component are handled by the parent.

[112]

Creating a Chat System with Electron and React — Planning, Designing, and Development

Electron meets React

Now, we have an idea about both Electron and React. What about on how to use them
together? To get a grasp on it, we will start not with our real application, but with a simple,
similar example. It will include a few components and a form. The application will reflect
user input in the window title. I suggest cloning our last example. We can reuse the
manifest and main process script. However we have to bring the following changes to the
manifest:

. /package. json

{

"name": "chat",
"version": "1.0.0",
"main": "./app/main.js",
"scripts": {
"start": "electron .",
"dev": "webpack -d --watch",

"build": "webpack"

s

"dependencies": {
"prop-types": "715.5.7",
"react": "~15.4.2",
"react-dom": ""15.4.2"

s

"devDependencies": {
"babel-core": ""6.22.1",
"babel-loader": ""6.2.10",
"babel-plugin-transform-class—-properties": "76.23.0",
"babel-preset-es2017": ""*6.22.0",
"babel-preset-react": ""6.22.0",
"devtron": "~1.4.0",
"electron": ""1.6.2",
"electron-debug": "~1.1.0",
"webpack": ""2.2.1"

}

In the preceding example, we add the react and react-dom modules. The first is the
library core and the second serves as a glue between React and DOM. The prop-types
module brings us type-checking abilities (till React v.15.5, which was a built-in object of the
library). We add webpack as a dev-dependency in addition to electron-specific modules.
Webpack is a module bundler that takes in varying types (sources, images, markup, and
CSS) of assets and produces a bundle(s) that can be loaded by the client. We will use
webpack to bundle our React/JSX-based application.

[113]

Creating a Chat System with Electron and React — Planning, Designing, and Development

However, webpack doesn't transpile JSX its own; it uses the Babel compiler (babel-core).
We also include the babel-1loader module, which bridges between webpack and Babel.
The babel-preset-react module is a so-called Babel preset (a set of plugins) that allows
Babel to deal with JSX. With the babel-preset-es2017 preset, we make Babel compile
our ES2017-compliant code into ES2016, which is greatly supported by Electron. What is
more, [included the babel-plugin-transform-class-properties Babel plugin to
unlock features of the proposal called ES Class Fields & Static Properties
(https://github.com/tc39/proposal—class—public—fields).SO,VVEVVﬂlbeEﬂﬂetO(jeﬁne
class properties directly without the help of a constructor, which did not yet land to the
specification.

There are two extra commands in the scripts section. The build command bundles
JavaScript for the client. The dev command sets webpack in a watch mode. So, whenever
we change any of the sources, it automatically bundles the application.

Before using webpack, we will need to configure it:

./webpack.config.js

const { join } = require("path"),
webpack = require("webpack");
module.exports = {
entry: join(__dirname, "app/renderer.jsx"),
target: "electron-renderer",
output: {
path: join(__dirname, "app/build"),
filename: "renderer.js"

}I
module: {
rules: [
{
test: /.jsx?$/,
exclude: /node_modules/,
use: [{
loader: "babel-loader",
options: {
presets: ["es2017", "react"],
plugins: ["transform-class-properties"]
}
H

}i

[114]

Creating a Chat System with Electron and React — Planning, Designing, and Development

We set app/renderer. jsx as the entry point. So, webpack will read it first and resolve any
met dependencies recursively. The compiled bundle can be found then in
app/build/renderer. js. So far, we have set the only rule for webpack: every met . js or
. Jsx file with the exception of the node_modules directory goes to Babel, which is
configured for the es2017 and react presets (and the transform-class-properties
plugin, to be precise). So, if we run now, the npm run build webpack will try compiling
app/renderer. jsx into app/build/renderer. js, which we call from the HTML.

The code for the . /app/index.html file is as follows:

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Hello World!</title>
</head>
<body>
<app></app>
</body>
<script>
require("./build/renderer.js");
</script>
</html>

The main renderer script may look as follows:
./app/renderer. jsx

import React from "react";
import ReactDOM from "react-dom";

import Header from "./Components/Header.jsx";
import Copycat from "./Components/Copycat.jsx";

ReactDOM. render ((
<div>
<Header />
<Copycat>
<1i>Child node</1li>
<1i>Child node</1li>
</Copycat>
</div>
), document.querySelector("app"));

[115]

Creating a Chat System with Electron and React — Planning, Designing, and Development

Here, we import two components--Header and Copycat--and use them in a composite one,
which we bind to the DOM custom element, <app>.

The following is the first component we describe with a function:
./app/Components/Header. jsx

import React from "react";
import PropTypes from "prop-types";

export default function Header (props){
const { title } = props;
return (
<header>
<h3>{title}</h3>
</header>
)i

Header.propTypes = {
title: PropTypes.string
bi

The function in the preceding code takes one property--t it le (we passed it in the parent
component, <Header />)--and renders it as a heading.

Note that we use PropTypes to validate the tit1le property value. If we happen to set a
value other than string to t it 1e, a warning will be shown in the JavaScript console.

The following second component is presented with a class:
. /app/Components/Copycat.jsx

import React from "react";
import { remote } from "electron";

export default class Copycat extends React.Component {

onChange (e){
remote.getCurrentWindow () .setTitle(e.target.value);

}

render () A
return (
<div>
<input placeholder="Start typing here"
onChange={this.onChange.bind(this)} />

[116]

Creating a Chat System with Electron and React — Planning, Designing, and Development

{this.props.children}

</div>

}

This component renders an input field. Whatever one is typing in the field gets reflected in
the window title. Here, I have set a goal to show a new concept: children
components/nodes.

Do you remember we declared Copycat with children nodes in the parent component? The
code for the Copycat element is as follows:

<Copycat>
<1i>Child node</1i>
<1i>Child node</1i>
</Copycat>

Now, we receive these list items in this.props.children and render them within .

Besides this, we subscribe a this.onChange handler for change events on the input
element. As it changes, we obtain a current window instance from the remote function of
electron (remote.getCurrentWindow ()) and replace its title with input contents.

To see what we've got, we install dependencies using npm i, build the project using npm
run build, and launch the application using npm start:

Let's play

Copycat says:

I'm unique

e Child node
e Child node

[117]

Creating a Chat System with Electron and React — Planning, Designing, and Development

Enabling DevTools extensions

I'believe that you had no problems when running the last example. Yet, when we need to
trace an issue in a React application, it can be tricky, as DevTools shows us what is
happening to the real DOM; however, we want to know about the virtual one also.
Fortunately, Facebook offers an extension for DevTools called React Developer Tools
(http://bit.1ly/1dGLkxDb).

We will install this extension with electron-devtools-installer (https://www.npmjs.com/pac
kage/electron-devtools-installer). This tool supports a number of DevTools
extensions including a few React-related: React Developer Tools
(REACT_DEVELOPER_TOOLS), Redux DevTools Extension (REDUX_DEVTOOLS), React Perf
(REACT_PERF). We will pick only the first one for now.

First we install the package:

npm i -D electron-devtools-installer
Then we add to the main process script the following line:

./app/main.js

const { default: installExtension, REACT_DEVELOPER_TOOLS } = require(
"electron-devtools—installer");

We imported from the package installExtension function and
REACT_DEVELOPER_TOOLS constant, which represents React Developer Tools . Now we
can call the function as soon as application is ready. On this event we already invoke our
createWindow function. So we can extend the function rather than subscribe again for the
event:

function createWindow () {
installExtension (REACT_DEVELOPER_TOOLS)
.then ((name) => console.log(Added Extension: ${name}’))
.catch((err) => console.log("An error occurred: ", err));
// ..

Now, when I launch the application and open DevTools (F12), I can see a new tab, React,
which brings me to the corresponding panel. Now, it is possible to navigate through the
React component tree, select its nodes, and inspect the corresponding components, edit its
props, and state:

[118]

Creating a Chat System with Electron and React — Planning, Designing, and Development

= 4] Elements Console Sources Metwork Timeline Profiles React » :
® 0 Highlight Updates Highlight Search Props
hildr
L
P <Header title="Let's play™>.</Header
L
L)
.
3

Static prototype

At this point, we are quite ready to start with the chat application. Yet, it will be easier to
grasp if we create first a static version and then extend it with the intended functionality.
Nowadays, developers often do not write CSS from scratch, but reuse components of
HTML/CSS frameworks such as Bootstrap. There is a framework dedicated for the Electron
application--Photonkit (http://photonkit .com). This framework provides us with building
blocks such as layouts, panes, sidebar, lists, buttons, forms, table, and buttons. A UI
constructed of these blocks looks in the style of macOS, automatically adapted for Electron
and responsive to its viewport size. Ideally, I would go with ready PhotonKit components
built with React (http://react-photonkit.github.io), but we will do it with HTML. I
want to show you how you can incorporate an arbitrary third-party CSS framework on the
example of PhotonKit.

First, we install it with NPM:

npm i -S photonkit

[119]

Creating a Chat System with Electron and React — Planning, Designing, and Development

What we really need from the package is CSS and fonts files from the dist subfolder. The
only truly reliable way to access the package content from the application is the require
function (http://bit.ly/20Gu0vn). It's clear how to request JavaScript or JSON files, but
what about other types, for example, CSS? With webpack, we can bundle theoretically any
content. We just need to specify the corresponding loaders in the webpack configuration
file:

./webpack.config.js

module.exports = {

{
module: {
rules: [

{
test: /\.css$/,
use: ["style-loader", "css—-loader"]

]
}
}i

We extended webpack configuration with a new rule that matches any files with extension
css. Webpack will process such files with style-loader and css-loader. The first one
reads the requested file and adds it to the DOM by injecting a style block. The second brings
to the DOM any assets requested with @ import and url ().

After enabling this rule, we can load Photon styles directly in a JavaScript module:
import "photonkit/dist/css/photon.css";

However, the custom fonts used in this CSS still won't be available. We can fix it by further
extending the webpack configuration:

./webpack.config.js
module.exports = {

module: |
rules: [

{
test: /\.(eot|svgl|ttf|woff|woff2) (\?2v=[0-9]\.[0-9]\.[0-9])72$/,
use: [{
loader: "file-loader",

[120]

Creating a Chat System with Electron and React — Planning, Designing, and Development

options: {
publicPath: "./build/"

This rule aims for font files and exploits file-1loader, which takes the requested file from
the package, stores it locally, and returns the newly created local path.

So, given that the styles and fonts are handled by webpack, we can proceed with
components. We will have two components representing the window header and footer.
For the main section, we will use Welcome when the user has not yet provided any name,
and ChatPane afterward. The second one is a layout for Participants and
Conversation components. We will also have a root component, App, that connects all
other components with the future chat services. Actually, this one works not like a
presentational component, but as a container (http://redux.js.org/docs/basics/UsageW
ithReact.html). So, we are going to keep it separate from others.

As we are now done with the architecture, we can write down our start script:
./app/renderer. jsx

import "photonkit/dist/css/photon.css";
import React from "react";
import ReactDOM from "react-dom";

import App from "./Containers/App.Jjsx";

ReactDOM.render ((
<App />
), document.querySelector("app"));

Here, we add to the DOM the CSS of PhotonKit library (import
"photonkit/dist/css/photon.css") and bind the App container to the <app> element.
The following container goes next:

./app/js/Containers/App.JjsSx

import React from "react";
import PropTypes from "prop-types";

import ChatPane from "../Components/ChatPane.jsx";
import Welcome from "../Components/Welcome.jsx";
import Header from "../Components/Header.jsx";

[121]

Creating a Chat System with Electron and React — Planning, Designing, and Development

import Footer from "../Components/Footer.jsx";

export default class App extends React.Component {

render () A
const name = "Name";
return (

<div className="window">
<Header></Header>
<div className="window-content">
{ name ?
(<ChatPane
/>)
(<Welcome />) }
</div>
<Footer></Footer>
</div>

)
}

At this stage, we just lay out other components using PhotonKit application layout styles
(.window and .window-content). As we have agreed, we render either ChatPane or
Welcome between header and footer, depending on the value of the local constant, name.

By the way, both the header and footer we build from Photon mark-up component
(http://photonkit.com/components/) are called bar. Besides a neat styling, it also enables
the possibility to drag the application window around your desktop:

./app/js/Components/Header. jsx

import React from "react";

export default class Header extends React.Component {
render () A
return (
<header className="toolbar toolbar-header">
<div className="toolbar-actions">
<button className="btn btn-default pull-right">

</button>
</div>
</header>

[122]

Creating a Chat System with Electron and React — Planning, Designing, and Development

As you can figure out from Photon CSS classes in the Header component (.toolbar and
.toolbar-header), we render a bar on the top of the window. The bar accepts action
buttons (.toolbar-actions). At the moment, the only button available is meant to close
the window.

In the Footer component, we render a bar positioned at the bottom (. toolbar-footer):
./app/js/Components/Footer. jsx

import React from "react";
import * as manifest from "../../../package.json";

export default function Footer () {
return (
<footer className="toolbar toolbar-footer">
<hl className="title">{manifest.name} v.{manifest.version}</hl>
</footer>
)
}

It includes the project name and version from the manifest.

For the welcome screen, we a have a simple form with the input field (input . form-
control) for the name and a submit button (button.btn-primary):

./app/js/Components/Welcome. jsx
import React from "react";
export default class Welcome extends React.Component {

render () A
return (
<div className="pane padded-more">
<form>
<div className="form-group">
<label>Tell me your name</label>
<input required className="form-control" placeholder="Name"
/>
</div>
<div className="form-actions">
<button className="btn btn-form btn-primary">O0K</button>
</div>
</form>
</div>

[123]

Creating a Chat System with Electron and React — Planning, Designing, and Development

}

The ChatPane component places Participants on the left and Conversation on the
right. It's pretty much everything what it does at the moment:

./app/js/Components/ChatPane. jsx

import React from "react";

import Participants from "./Participants.jsx";
import Conversation from "./Conversation.jsx";

export default function ChatPane(props) {
return (
<div className="pane-group">
<Participants />
<Conversation />
</div>
)i

}

In the Participants component, we use a layout pane of a type sidebar (.pane.pane-
sm.sidebar):
./app/js/Components/Participants. jsx

import React from "react";

export default class Participants extends React.Component {
render () {
return (
<div className="pane pane-sm sidebar">
<ul className="list-group">
<li className="list-group—-item">
<div className="media-body">
<span className="icon icon-—
user"> Name
<p>Joined 2 min ago</p>
</div>
</1li>

</div>

)
}

It has a list of chat participants. Every name we prefix with the Entype icon is provided by
Photon.

[124]

Creating a Chat System with Electron and React — Planning, Designing, and Development

The last component--Conversation--renders chat messages in a list (. 1ist-group) and

the submission form:
./app/js/Components/Conversation. jsx

import React from "react";
export default class Conversation extends React.Component {

render () {
return (
<div className="pane padded-more l-chat">
<ul className="list-group l-chat-conversation">
<li className="list-group-item">
<div className="media-body">
<time className="media-body__ time">10.10.2010</time>
Name:
<p>Text...</p>
</div>

<form className="l-chat-form">
<div className="form-group">
<textarea required placeholder="Say something..."
className="form-control"></textarea>
</div>
<div className="form-actions">
<button className="btn btn-form btn-primary">0K</button>
</div>
</form>
</div>
)i

}

This is the first time we need to have a few custom styles:
./app/assets/css/custom.css

.1-chat {
display: flex;
flex—-flow: column nowrap;
align-items: stretch;

}

.l-chat-conversation {
flex: 1 1 auto;
overflow-y: auto;

}

.l-chat-form {
flex: 0 0 110px;

[125]

Creating a Chat System with Electron and React — Planning, Designing, and Development

t

.media-body__time {
float: right;

t

Here, we make the form (.1-form) stick to the bottom. It has a fixed height (110px), and
all the available space upward takes the message list (. 1-chat-conversation). In
addition, we align message time information (.media-body__time) to the right and take it
out of the flow (float: right).

This CSS can be loaded in HTML:
./index.html

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Chat</title>
<link href="./assets/css/custom.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<app></app>
</body>
<script>
require("./build/renderer.js");
</script>
</html>

We make sure that all the dependencies are installed (npm i), then build (npm run build)
and launch the application (npm start). Asit's done, we can see the following intended Ul:

[126]

Creating a Chat System with Electron and React — Planning, Designing, and Development

A Name
Joined 2 min ago Name: 10.10.2010
Text...

chat w100

Summary

Despite the fact that we do not have a functional application yet and just a static prototype,
we have come a long way. We talked about the Electron GUI framework. We compared it to
NW.js and went through its peculiarities. We made a simplified Electron demo application
consisting of a main process script, renderer one, and HTML. We had an introduction into
React basics. We focused on components and elements, J[SX and virtual DOM, props, and
state. We configured webpack to compile our ES.Next-compliant JSX into a JavaScript-
acceptable one by Electron. To consolidate our knowledge, we made a small demo React
application powered by Electron. What is more, we examined how to enable a DevTools
extension (React Developer Tools) in Electron to trace and debug React applications. We
have briefly familiarized ourselves with the PhotonKit frontend framework and created
React components for the chat application using PhotonKit styles and markup. Finally, we
have bundled our components together and rendered the application in Electron.

[127]

Creating a Chat System with
Electron and React —
Enhancement, Testing, and
Delivery

We finished the last chapter with a static prototype. We learned about React, composed the
components, but didn't provide them with any state. Now, we will start binding the state of
the application window to the Header component. As the state concept clarified, we will
move to the chat services. After getting a brief introduction to the WebSockets technology,
we will implement both the server and client. We will bind the service events to the
application state. Finally, we will have a fully working chat. We won't stop on it, but will
take care of the technical debt. So, we will set up the Jest testing framework and unit-test
both the stateless and stateful components. Afterward, we will package the application and
publish releases though a basic HTTP server. We will extend the application to update
when new releases are available.

Revitalizing the title bar

Until now, our title bar was not really useful. Thanks to the Photon framework, we can
already use it as a handle to drag and drop the window across the viewport, yet we are
missing windowing actions such as close, maximize, and restore window.

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

Let's implement them:
./app/js/Components/Header. jsx

import { remote } from "electron";
const win = remote.getCurrentWindow () ;

export default class

Header extends React.Component {
VA
onRestore = () => {
win.restore();
}
onMaximize = () => {
win.maximize () ;

}
onClose = () => {
win.close () ;

We do not go with methods, with properties keeping anonymous
functions bound to the object scope. This trick is possible, thanks to
babel-plugin-transform-class—properties, which we included in
the manifest and Webpack configuration in chapter 3, Creating a Chat
System with Electron and React — Planning, Design, and Development.

We extended the component with handlers to close the window, to maximize, and then to
restore to its original size. We already have a c1ose button in JSX, so we just need to
subscribe to the corresponding handler method for the c1ick event using the onClick
attribute:

<button className="btn btn-default pull-right" onClick={this.onClose}>
<span className="icon

icon-cancel">
</button>

The maximize and restore buttons, though, are rendered in HTML conditionally,
depending on the current window state. Since we will utilize the state, let's define it:

constructor (props) {
super (props);

[129]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

this.state = { isMaximized: win.isMaximized() };

}

The isMaximized state property takes in the corresponding flag from the current window
instance. Now, we can extract this value from the state in JSX:

render () A
const { isMaximized } = this.state;
return (
<header

className="toolbar toolbar-header">
<div className="toolbar—-actions">

<button className="btn btn-default pull-right" onClick={this.onClose}>
<span

className="icon icon-cancel">
</button>

isMaximized ? (
<button className="btn btn-default pull-right"
onClick={this.onRestore}>

</button>)

<pbutton className="btn btn-default pull-right"
onClick={this.onMaximize}>

</button>)

</div>
</header>

}

So, we render the restore button when it is true and maximize otherwise. We also
subscribe the handlers for the c1ick events on both the buttons, but what about changing
the state after the window maximizes or restores?

[130]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

We can subscribe to the corresponding window events straight before the component is
rendered to the DOM:

componentWillMount () {
win.on("maximize", this.updateState);
win.on("unmaximize",

this.updateState);
}

updateState = () => {
this.setState ({
isMaximized:

win.isMaximized ()
)i
}

When the window changes its state handler, updateState invokes and actualizes the
component state.

Utilizing WebSockets

We have a static prototype, and now we will make it functional. Any chat requires
communication between connected clients. Usually, clients do not connect directly but
through a server. The server registers connections and forwards the messages. It's pretty
clear how to send a message from the client to server, but can we do it in the opposite
direction? In the olden days, we had to deal with long-polling techniques. That worked, but
with the overhead of HTTP, it is not really suitable when we mean a low latency
application. Luckily for us, Electron supports WebSockets. With that API, we can open a
full-duplex, bi-directional TCP connection between the client and server. WebSockets
provides higher speed and efficiency as compared to HTTP. The technology brings
reduction of upto 500:1 in unnecessary HTTP traffic and 3:1 in latency
(http://bit.ly/2ptVvzlk). You can find out more about WebSockets in my book JavaScript
llnhx%ed(https://www.packtpub.Com/web—development/javascript—unlocked}I{ere,vve
will get acquainted with the technology briefly, with the help of a small demo. I suggest
examining an echo server and a client. Whenever a client sends a text to the server, the
server broadcasts it on all the connected clients. So, on every page with the client loaded, we
receive the message in real time.

[131]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

Of course, we won't write a protocol implementation for the server, but go with an existing
PJPDAQpaCkage-ﬂﬁodeﬁ%vvebsocket(https://www.npmjs.com/package/nodejs— websocketﬁ

npm i —-S nodejs-—-websocket

Using the package API, we can quickly make our code to serve incoming messages from the
client:

./server.js
const ws = require("nodejs-websocket"),

HOST = "127.0.0.1",
PORT = 8001;

const
server = ws.createServer ((conn) => {
conn.on("text", (text) => {

server.connections.forEach(conn => {
conn.sendText (text);
)i
)i

conn.on("error", (err) => {
console.error("Server error", err);

)i
)i

server.listen(PORT, HOST, () => {
console.info("Server is ready");
P

Here, we instantiate an object representing the WebSockets server (server). Within the
callback of the createserver factory, we will receive connection objects. We subscribe to
every connection for the "text" and "error" events. The first one happens when a data
frame is sent from the client to the server. We simply forward it to every available
connection. The second event is fired when something goes wrong, so we report the error.
Finally, we start the server in the given port and host, for example, I set port 8001. If this
port is taken in your environment by any other program, just change the value of the PORT
constant.

[132]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

We can compose the client of this simplified chat as a single page application. So create the
following HTML:

./index.html

<!DOCTYPE html>
<html>
<head>
<title>Echo</title>

<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-
scale=1.0">

</head>
<body>
<form id="form">
<input id="input" placeholder="Enter you

message..." />
<button>Submit</button>
</form>
<output

id="output"></output>
<script>

const HOST "127.0.0.1",
PORT = 8001,

form = document.getElementById("form"),
input = document.getElementById("input"),
output =

document .getElementById ("output");

const ws = new WebSocket (‘ws://S$S{HOST}:${PORT});

ws.addEventListener ("error", (e) => {
console.error("Client's error: ", e);

}) i

ws.addEventListener ("open", () => {
console.log("Client connected");

)i

ws.addEventListener ("message", e => {
output.innerHTML = e.data + "<br \>" + output.innerHTML;

[133]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

1)

form.addEventListener ("submit", (e) => {
e.preventDefault () ;
ws.send (input.value

)
1)

</script>
</body>
</html>

In the HTML, we placed a form with input control and output container. The intent is to
send input value on form, submit it to the server, and display the server response in the
output element.

In the JavaScript, we store a reference to the acting nodes and create an instance of the
WebSockets client. We subscribe for the error, open, and message client events. The first
two basically report on what is happening. The last one receives events from the server. In
our case, the server sends text messages, so we can take them as e.data. We also need to
handle the input from the client. Therefore, we subscribe for submit on the form element.
We use the send method of the WebSockets client to dispatch the input value to the server.

To run the example, we can use the http-server module (https://www.npmjs.com/packa
ge/http-server) to launch a static HTTP server for our index.html:

npm i -S http-server
Now, we can add the following commands to package. json:

{

"scripts": {
"start:client": "http-server . -o",
"start:server": "node server.js"

}

So, we can run the server as:

npm run start:server

[134]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

and then the client as:

npm run start:client

Echo » -

€ () 127.0.0.1:8080/?

LN j Echo x \ +

Enter you message...

€) @ 127.0.0.1:8080/? ¢ » =
MOO!
Impatient co... — Sib
Impatient cow. L
Who's there? MOO!
Knock! Knock! Impatient co...

Impatient cow.
Who's there?
Knock! Knock!

Implementing chat services

I believe that it's more or less clear how WebSockets works now, and we can apply the API
for our chat. However, in a real application, we need something more than to echo sent
texts. Let's put the intended event scenarios on paper:

¢ The Welcome component handles user input and sends via the client to the join
server event with the entered user name in the payload

e The server receives the join event, adds a new user to the set, and broadcasts the
participants event with the updated set

e The client receives the participants event and passes the set to the
Participants component, which updates the participant's list

[135]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

e The Conversation component handles user input and sends the entered
message via the client to the server as the text event with username, text, and
timestamp in the payload

e The server receives the text event and broadcasts it to all the chat participants

As we deal with event messages, we need a unified format for sending and receiving a
single source of truth. So, we implement a message wrapper--
./app/js/Service/Message. js:

class Message {

static toString(event, data){

return JSON.stringify ({
event, data

P) i

}

static fromString(text) {
return JSON.parse(text);

exports.Message = Message;

This module exposes two static methods. One transforms the given event name and
payload into a JSON string, which can be sent through WebSockets; another translates the
received string into a message object.

Now we write the server--. /app/js/Service/Server.js:

import * as ws from "nodejs-websocket";
import { Message } from "./Message";

export default class

Server |
constructor () {
this.server = ws.createServer ((conn) => {
conn.on("error", (err) => {
console.error("Server error", err);
}) i
conn.on (
"close", (code, reason) => {
console.log("Server closes a connection", code, reason);

)i

[136]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

conn.on("connection", () => {
console.info("Server creates a new connection");

)i

}
broadcast (event, data){
const text = Message.toString(

event, data);
this.server.connections.forEach(conn => {
conn.sendText (text);

)i

}
connect (host, port) {
this.server.listen(port, host, () => {
console.info("Server is ready");)
}

}

The same as the echo server, this one subscribes to connection events to report what is
going on and exposes the broadcast and connect methods. To make it handle incoming
messages, we extend the createServer callback:

constructor () {
this.server = ws.createServer ((conn) => {
conn.on("text",
(text) => {
const msg = Message.fromString(text),
method = ‘on${msg.event} ;
if ('this[method]) {
return;
}
this[method] (msg.data, conn);
}) i
/).
}) i
/).
}

[137]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

Now, when receiving a message, the server tries to call a handler method matching the
event name. For example, when it receives join event, it calls onjoin:

onjoin(name, conn) {
const datetime = new Date();
this.participants.set (conn, {

name: name,
time: datetime.toString()

P
this.broadcast ("participants",

Array.from(this.participants.values()));

}

The method accepts the event payload (the user name here) as the first parameter and the
connection reference as the second. It registers the connection in this.participant map.
So, we can now determine the associated user name and registration timestamp by a
connection. The method then broadcasts the values of the map as an array (a set of
usernames and timestamps).

However, we shall not forget to define this.participants as a map in the class
constructor:

constructor () {
this.participants = new Map();
YA

}

We also add a handler method for the text event:

ontext (data, conn) {
const name = this.participants.get (conn) .name;
this.broadcast (

"text", { name, ...data });

}

The method extracts the username associated with the given connection from the
this.participants, extends the message payload with it, and broadcasts the derived
message.

[138]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

Now, we can write the client--. /app/js/Service/Client. js:
const EventEmitter = require("events"),
READY_STATE_OPEN = 1;

import { Message } from

"./Message";

export default class Client extends EventEmitter {

connect (host, port){

return new Promise((resolve, reject) => {

this.socket = new WebSocket (‘ws://${host}:${port}"

this.socket.addEventListener ("open", () => {
resolve () ;

)i

this.socket.addEventListener("error", (e) => {
)

if (e.target.readyState > READY_STATE_OPEN {

reject () ;
}
}) i

this.socket.addEventListener ("message", e

=> {
const msg = Message.fromString(e.data),
method = “on${msg.event} ;
if (!'this[method]) {
return;
}
this[method] (msg.data);
}) i
}) i
}

onparticipants (data) {

[139]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

this.emit ("participants", data);
t
ontext (data) {

this.emit ("text", data);
t

getParticipants () {

return this.participants;

t
join (userName) {
this.userName = userName;

this.send("join", userName);

t
message (text) {
this.send("text", {

userName: this.userName,
text,
dateTime: Date.now ()
1) i
t

send (

event, data){
this.socket.send(Message.toString(event, data));
t
t

The client implements the same trick with the handler methods as the server, but this time,
we make the connect method return a Promise. Thus, we can adjust the execution flow if
the client failed to connect the server. We have two handlers: onparticipants and
ontext. Both of them simply bypass the received message to the application. Since the
Client class extends EventEmitter, we can use this.emit to fire an event and any
subscribed application module will be able to catch it. Besides, the client exposes two public
methods: join and message. One (join) will be consumed by the Welcome component to
register the provided username on the server, and the other (message) is called from the
Participants component to communicate the submitted text to the server. Both the
methods rely on the send private method, which actually dispatches messages.

[140]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

Electron comprises of the Node.js runtime and therefore allows us to run the server. So, to
make it simpler, we will include the server into the application. For that, we modify the
server code again:

connect (host, port, client) {
client.connect (host, port).catch(() => {
this.server.listen(port, host, () => {
console.info("Server is ready");

client.connect (

host, port).catch(() => {
console.error("Client's error");

Now it runs the supplied client.connect to establish a connection with our WebSockets
server. If it's the very first instance of the application running, no server is yet available.
Therefore, the client fails to connect and execution flow jumps into the catch callback. There,
we start the server and reconnect the client.

Bringing functionality to the components

Now when we have the server and client services, we can enable them in the application.
The most suitable place is the App container--. /app/js/Containers/App. jsx:

import Server from "../Service/Server";
import Client from "../Service/Client";

const HOST

"127.0.0.1",
PORT

8001;

export default class App extends React.Component {

constructor () {

super () ;
this.client = new Client ();
this.server = new Server();

[141]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

this.server.connect (HOST, PORT, this.client);

}
VA
}

Do you remember that we rendered either the ChatPane or Welcome component
conditionally in the static prototype?:

{ name ?
(<ChatPane client={client}
/>)
(

<Welcome onNameChange={this.onNameChange} />) }

Back then, we hardcoded name, yet it belongs to the component state. So, we can initialize
the state in the class constructor like this:

constructor () {
/...
this.state = {
name: ""

bi
}

Well, name is empty by default and we, therefore, show the Welcome component. We can
type in a new name there. As it's submitted, we need to somehow change the state in the
parent component. We achieve it with a technique known as Lifting state up. We declare a
handler for the name change event in the App container and pass it to the welcome
component with the props:

onNameChange = (userName) => {
this.setState ({ name: userName });
this.client.join(

userName) ;

}

render () A
const client = this.client,
name = this.state.name;
return (

<div className="window">
<Header></Header>
<div

[142]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

className="window-content">
{ name ?
(<ChatPane client={client}

/>)
(<Welcome onNameChange={this.onNameChange} />) }
</div>

<Footer></Footer>
</div>
)i
}

So, we extract name from the state and use it in the expression. Initially, name is empty and
therefore the Wwelcome component is rendered. We declare the onNameChange handler and
pass it to the Welcome component with the props. The handler receives the submitted
name, registers the new connection on the server (this.client. join), and changes the
component state. So, the ChatPane component replaces Welcome.

Now, we will edit the Welcome component--. /app/js/Components/Welcome. jsx

import React from "react";
import PropTypes from "prop-types";

export default class Welcome extends
React.Component {
onSubmit = (e) => {
e.preventDefault () ;

this.props.onNameChange (

this.nameEl.value || "Jon");

}

static defaultProps = {
onNameChange: () => {}

static propTypes = {
onNameChange: PropTypes.func.isRequired

}

render () A

[143]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

return (
<div className="pane padded-more">
<form onSubmit={this.onSubmit}>

<div className="form-group">
<label>Tell me your name</label>

<input required className="form-control" placeholder="Name"
ref={ (input) => { this.nameEl

= input; }} />
</div>
<div className="form-actions">

<button className="btn btn-form btn-primary">0K</button>
</div>

</form>
</div>

}

Whenever a component expects any props, it usually means that we have to apply the
defaultProps and propTypes static methods. These belong to the React . Component API
and are automatically called during component initialization. The first one sets a default
value for the props and the second validates them. In HTML, we subscribe to the onsubmit
handler for the form submit event. In the handler, we need to access an input value. With
the ref JSX attribute, we added the instance as a reference to the input element. So, from
the onSubmit handler, we can obtain the input value as this.nameEl.value.

Well, now the user can register in the chat, and we need to show the chat UI--
./app/js/Components/ChatPane. jsx:

export default function ChatPane(props) {
const { client } = props;
return (
<div
className="pane—-group">
<Participants client={client} />

<Conversation

client={client} />

[144]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

</div>

)
}

This one is a composite component that lays out the Participants and Conversation
children components and forwards client to them.

The first one is meant to display the list of participants--
./app/js/Components/Participants. jsx:

import React from "react";
import TimeAgo from "react-timeago";
import PropTypes from "prop-types";

export default class Participants extends React.Component {

constructor (props){
super (
props);
this.state = {
participants: props.client.getParticipants()

props.client.on("participants", this.onClientParticipants);

}

static defaultProps = {
client: null

static propTypes = {
client: PropTypes.object.isRequired

onClientParticipants = (participants) => {
this.setState ({
participants:

participants
})

[145]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

render () {
return (
<div className="pane pane-sm
sidebar">
<ul className="list-group">
{this.state.participants.map((user) => (

<li className="list-group-item" key={user.name}>
<div className="media-
body">

{user.name}

<p>Joined <TimeAgo date={user.time} /></p>
</div>
</1li>
))}

</div>

)
}

Here, we need some construction work. First, we define the state, which includes the
participant list from the props. We also subscribe to the client participants event and
update the state every time the server sends an updated list. When rendering the list, we
also show participant registration time, such as joined 5 minutes ago. For that, we use a
third-party component, TimeAgo, provided by the react-timeago NPM package.

Eventually, we are coming to the Conversation component--
./app/js/Components/Conversation. jsx:

import React from "react";
import PropTypes from "prop-types";

export default class Conversation

extends React.Component {
constructor (props) {
super (props);

this.messages [1;

this.state = {
messages: []

[146]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

props.client.on("text", this.onClientText);
}
static defaultProps = {
client: null
}
static propTypes = {
client: PropTypes.object.isRequired

onClientText = (msg) => {
msg.time new

Date(msg.dateTime);
this.messages.unshift (msg);
this.setState ({

messages: this.messages

P

static normalizeTime (date, now, locale){
const isToday = (

now.toDateString () === date.toDateString());
// when local is undefined, toLocaleDateString/toLocaleTimeString

use default locale
return isToday ? date.tolLocaleTimeString(locale)
date.toLocaleDateString(

locale) + ° ° + date.tolLocaleTimeString(locale);
}
render () {
const { messages } =

this.state;
return (
<div className="pane padded-more l-chat">
<ul

className="list-group l-chat-conversation">
{messages.map((msg, 1) => (

<li className="list-group-item" key={i}>
<div className="media-body">

<time className="media-body__time">{Conversation.normalizeTime (

[147]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

msg.time, new Date())}</time>

{msg.userName}:
{msg.text.split ("\n") .map((line,
inx) => (
<p key={inx}>{line}</p>
))}
</div>
</1li>
)}

</div>

}

During the construction, we subscribe to the client text event and collect the received
messages in the this.messages array. We use these messages to set the component state.
In the render method, we extract the message list from the state and traverse it to render
every item. The message view includes the sender's name, text, and time. The name we
output as it is. We split the text in lines and wrap them with the paragraph element. To
display time, we use the normalizeTime static method. This method transforms the Date
object into a long string (date and time) when it's older than today, and into a short string
(date) otherwise.

We also need a form for sending messages to the chat. The ideal method would be to put
the form into a separate component, but for the sake of brevity, we will keep it next to the
conversation view:

render () {
const { messages } = this.state;
return (

<form onSubmit=

{this.onSubmit} className="1l-chat-form">
<div className="form-group">

<textarea required placeholder="Say something..."
onKeyDown={this.onKeydown}

className="form-control" ref={ el => { this.inputEl = el; }}></textarea>
</div>

<div className="form-actions">
<button className="btn btn-form btn-

[148]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

primary">0K</button>
</div>
</form>
)i
}

Pretty much as in the Welcome component, we make a local reference to the text area node
and subscribe the onSubmit handler for the form submit event. To make it user-friendly,
we set onKeydown to listen to a keyboard event on the text area. When Enter is pressed

during typing, we submit the form. So, we have to now add new handlers to the component
class:

const ENTER_KEY = 13;
/).
onKeydown = (e) => {
if (e.which === ENTER_KEY && !

e.ctrlKey && !'e.metaKey && !e.shiftKey) {
e.preventDefault () ;
this.submit () ;
t
t
onSubmit = (e) => {
e.preventDefault () ;
this.submit () ;

submit () {
this.props.client.message(this.inputEl.value);
this.inputEl.value = "";

/..

When the form is submitted either by pressing the OK button or Enter, we pass the message
to the server via the message method of the client and reset the form.

I don't know about you, but I have the itch to run the application and see it in action. We
have two options here. We can just start multiple instances from the same machine, register
each one with a different name, and start chatting:

[149]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

2 30n —
Joined 2 mi . x
2 voritte LJon
Joined 1 mi Joined 2 minutes ago Yaoritte: 10:33:56 AM
You know nothing, Jon Snow
A Yaritte
Joined 1 minute ago Yyritte: 10:33.43 AM

©Oh, hundreds X

Jon: 10:33:34 AM
Why are you weeping? ILwas only @ song. There are hundieds of giants, Fve just seen them

chatv.1.0.0

Alternatively, we set a public IP in the App container to make the chat available across the
network.

Writing unit-tests

In real life, we cover application functionality with unit-tests. When it comes to React, the
Jest testing framework is the first to pop up in one's mind. The framework is developed by
Facebook as well as React. Jest is not aimed at React only; you can test any JavaScript. Just
to see how it works, we can set up a new project:

npm init -y
Install Jest by running the following command:

npm i -D jest

[150]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

Edit the scripts section in package. json:

"scripts": {
"test": "jest"

}
Place the example unit for testing;:
./unit.]js

function double(x){
return x * 2;

}

exports.double = double;

This is a simple pure function that double any given number. What we need to do now is to
just place a JavaScript file of a name matching the *. (spec|test) . js pattern--
./unit.spec.js:

const { double } = require("./unit");
describe ("double", () => {
it ("doubles a given number", () => {
const x = 1;
const res = double(x);
expect (res).toBe(2);

1)
1)

If you are familiar with Mocha or, better, Jasmine, you will have no problem reading this
test suite. We describe an aspect (describe ()), declare our expectations (it ()), and assert
that the result produced by the unit under test meets the requirements (expect ()).
Basically, the syntax doesn't differ from the one we used in chapter 2, Creating a File
Explorer with NW.js — Enhancement and Delivery.

By running npm test, we get the following report:

I . /unit.spec.js

doub

Test Suites: passed, 1 total
Tests: passed, 1 total
Snapshots: 9 total

Time: 3.89s, estimated 1s

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

What makes Jest preferable in our case is that it's really close to the React philosophy and
incorporates specific features for testing a React application. For example, Jest comprises of
the toMatchSnapshot assertion method. So, we can build a component in the virtual
DOM, and make and save the snapshot of the element. Then, after refactoring, we run the
tests. Jest takes actual snapshots of the modified components and compares them to the
stored ones. That's a common approach for regression tests. Before putting it into practice,
we have to set up Jest for our environment. We specified our bundling configuration in
webpack.config. js. Jest won't consider this file. We have to compile the source for Jest
separately, and we can do it with babel-jest:

npm i -D babel-jest

This plugin takes the code transformation instructions from the Babel runtime config--
./ .babelrc:

{

"presets": [
["env", {
"targets": { "node": 7 1},
"useBuiltIns": true
Py
"react"
JI
"plugins": [

"transform-es2015-modules-commonijs",

"transform-class-properties",
"transform-object-rest-spread"
]
}

Here, we use preset env (https://babeljs.io/docs/plugins/preset-env/), which
automatically determines and loads the plugins required by the target environment
(Node.js 7). Do not forget to install the preset:

npm i -D babel-preset-env

We also apply the transform-class-properties and transform-class—properties
plugins to get access to rest, spread, and ES Class Fields and Static Properties syntax,
respectively (we have already used these plugins for Webpack configuration in chapter 3,
Creating a Chat System with Electron and React — Planning, Design, and Development).

[152]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

As we did in the normalizeTime test example, we will modify the manifest--

. /package. json:

{
"scripts": {
ll«t;éétll: lljestll
I
lljestll: {
"roots": [
"<rootDir>/app/js"
]
I
}

This time, we also explicitly point Jest to our source directory, app/js.

As I explained earlier, we will produce snapshots of React components for further
assertions. That can be achieved with the react-test-renderer package:

npm i -D react-test-renderer

Now we can write our first component regression test--
./app/js/Components/Footer.spec. jsx:

import * as React from "react";
import Footer from "./Footer";
import * as renderer from "react-test-

renderer";

describe("Footer", () => {
it ("matches previously saved snapshot", ()

const tree = renderer.create
<Footer />

)i
expect (tree.toJSON ()
) .toMatchSnapshot () ;

)i
)i

= {

[153]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

Yeah, it turned out that easy. We create an element with renderer.create and obtain
static data representation by calling the t cJsON method. When we first run the test (npm
test), it creates the __snapshots__ directory with the snapshot next to the test file. Every
subsequent time, Jest compares the stored snapshots to the actual ones.

If you want to reset snapshots, just run "npm test -- -u’.

Testing a stateful component is similar--
./app/js/Components/Participants.spec. jsx:

import * as React from "react";
import Client from "../Service/Client";
import Participants from

"./Participants";
import * as renderer from "react-test-renderer";

describe("Participants", () => {
it ("matches previously saved snapshot", () => {
const items = [{
name: "Jon",

time: new Date(2012, 2, 12, 5, 5, 5, 5) }
1,

client = new Client (),

component = renderer.create(<Participants client={client} />
)

component .getInstance

() .onClientParticipants(items);
expect (component.toJSON()) .toMatchSnapshot () ;
F) i
F) i

We use the get Instance method of the created element to access the component instance.
Thus, we can call the methods of the instance that set the concrete state. Here, we pass the
fixture list of participants directly to the onClientParticipants handler. The component
renders the list, and we make a snapshot.

[154]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

Regression tests are good to check whether the component wasn't broken during
refactoring, but they do not guarantee that the component behaved as intended in the first
place. React provides an API via the react-dom/test-utils module
(https://facebook.github.io/react/docs/test-utils.html), which we can use to assert
that the component really renders everything we expect from it. With third-party package
enzynle,vveCaIld()everlnlore(http://airbnb.io/enzyme/docs/api/shallow.html).Tk)get
an idea about it, we add a test in the Footer suite--
./app/js/Components/Footer.spec. jsx:

import { shallow } from "enzyme";

import * as manifest from "../../../package.json";
describe (
"Footer", () => {
YV
it ("renders manifest name", () => {
const tree = shallow(

<Footer />
)
expect (tree.find("footer").length).toBe(1);
expect (tree.find(

"footer").text ().indexOf(manifest.name)).not.toBe(-1);
)i
)i

So, we assume that the component renders an HTML footer element (tree. find (
"footer")). We also check whether the footer contains the project name from the
manifest:

= /Footer.spec.jsx

s /Participants.spec.jsx

Participah

Test Suites: total
Tests: total

Snapshots: total
Time:

[155]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

Packaging and distribution

When we worked with File Explorer and NW.js, we used the nwjs-builder tool for
packaging our application. The Electron has an even more sophisticated tool--electron-
builder (https://github.com/electron-userland/electron-builder). Actually, it builds
an application installer. The range of target package formats electron-builder supports is
impressive. Then, why not try packaging our application? First, we install the tool:

npm i -D electron-builder

We add a new script to the manifest--. /package. json:
"scripts": {

"dist": "build"
by

We also set an arbitrary ID for the application in field build:

"build": {
"appId": "com.example.chat"
by

We definitely want to provide the application with an icon, so we create the build
subdirectory and place their icon.icns for macOS, icon. ico for Windows there. Icons for
Linux will be extracted from icon.icns. Alternatively, you can place icons in
build/icons/ named after their sizes--64x64.png.

In fact, we have not yet granted our application window with an icon. To fix it, we modify
our main process script--. /app/main. js:

mainWindow = new BrowserWindow ({
width: 1000, height: 600, frame: false,
icon: path.join(

__dirname, "icon-64x64.png
n)
P

Everything seems ready, so we can run the following:

npm run dist

[156]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

As the process completes, we can find the generated package in the default format in the
newly created dist folder:

e Ubuntu: chat-1.0.0-x86_64.AppImage
e * Windows: chat Setup 1.0.0.exe
e * MacOS: chat-1.0.0.dmg

Of course, we can aim for a specific target format:

build -1 deb
build -w nsis-web
build -m pkg

Note that the diverse package format may require additional metadata in the manifest
(https://github.com/electron-userland/electron-builder/wiki/Options). For instance,
packaging in . deb requires both the homepage and author fields filled in.

Deployment and updates

Built-in capacities for auto updates is one of Electron's most prominent advantages over
NW.js. Electron's aut oUpdater module (http://bit.1ly/1KKdNQs) utilizes the Squirrel
framework (https://github.com/squirrel), which makes silent possible. It works nicely in
conjunction with the existing solution for multiplatform release servers; in particular, one
can run it with Nuts (https://github.com/GitbookI0/nuts) using GitHub as a backend.
We can also quickly set up a fully-featured node server based on electron-release-
server (https ://github. com/ArekSredzki/electronfreleasefserver), which includes
release management UL

Electron-updater doesn't support Linux. The project maintainers
recommend using the distribution's package manager to update the
application.

For the sake of brevity, we will walk through a simplified autoupdate approach that doesn't
require a real release server, but only requires access to static releases via HTTP.

We start by installing the package:

npm i —-S electron-updater

[157]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

Now, we add to the manifest's build field--publish property:

"build": {
"appId": "com.example.chat",
"publish": [
{
"provider":

"generic",
"url": "http://127.0.0.1:8080/"

]
b

Here, we state that our dist folder will be available publicly on 127.0.0.1:8080, and we
go on with the generic provider. Alternatively, the provider can be set to Bintray
(https://bintray.com/) or GitHub.

We modify our main process script to take advantage of the elect ron-updater API--
./app/main. js:

const { app, BrowserWindow, ipcMain } = require("electron"),
{ autoUpdater } = require("electron-

updater");

function send(event, text = "") {
mainWindow && mainWindow.webContents.send (

event, text);

}

autoUpdater.on ("checking-for-update", () => {
send("info", "Checking for

update...");

P
autoUpdater.on ("update—-available", () => {

send("info", "Update not available");

}) i

autoUpdater.on ("update-not-available", () => {
send("info", "Update not available");

}) i

[158]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

autoUpdater.on ("error", () => {
send("info", "Error in auto-updater");
)i

autoUpdater.on

("download-progress", () => {
send("info", "Download in progress...");

1)

autoUpdater.on

("update-downloaded", () => {
send("info", "Update downloaded");
send("update-downloaded");

)i

ipcMain.on("restart", () => {
autoUpdater.quitAndInstall () ;
1)

Basically, we subscribe for the autoUpdater events and report them to the renderer script
using the send function. When update-downloaded is fired, we send the update-
downloaded event to the renderer. The renderer on this event supposedly reports to the
user about a newly downloaded version and asks whether it would be convenient to restart
the application. When confirmed, the renderer sends the restart event. From the main
process, we subscribe to it using ipcMain (http://bit.1ly/2pChUNg). So, when reset is
fired, autoUpdater restarts the application.

Note that elect ron-debug won't be available after packaging, so we have to remove it
from the main process:

// require("electron-debug") ();

Now, we make a few changes to the renderer script--. /app/index.html:

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">

<title>Chat</title>
<link href="./assets/css/custom.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<app></app>

<i id="statusbar"

class="statusbar"></1i>

[159]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

</body>
<script>
require("./build/renderer.js");

// Listen for messages
const { ipcRenderer } = require("electron"),
statusbar =

document .getElementById("statusbar");
ipcRenderer.on("info", (ev, text) => {

statusbar.innerHTML = text;

)i

ipcRenderer.on("update-downloaded", () => {
const ok = confirm

('The application will automatically restart to finish installing the
update');
ok && ipcRenderer.send (

"restart");

1)

</script>
</html>

In HTML, we add the <i> element with ID statusbar, which will print out reports from
the main process. In JavaScript, we subscribe for main process events using ipcRenderer
(http://bit.ly/2p9xuwt). On the info event, we change the content of the statusbar
element with the event payload string. When update-downloaded occurs, we call
confirm for the user opinion about a suggested restart. If the result is positive, we send the
restart event to the main process.

Eventually, we edit CSS to stick our statusbar element in the left-bottom corner of the
viewport--. /app/assets/css/custom.css:

.statusbar {
position: absolute;
bottom: 1px;
left: 6px;

}

Everything is done; let's rock it! So, we first rebuild the project and release it:

npm run build
npm run dist

[160]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

We make the release available through HTTP using http-server
(https://www.npmjs.com/package/http- server):

http-server ./dist

We run the release to install the application. The application starts up as usual because no
new releases are available yet, so we release a new version:

npm version patch
npm run build
npm run dist

In the footer component, we display the application name and version
taken by the require function from the manifest. Webpack retrieves it at
compilation time. So, if package . json is modified after the application is
built, the changes do not reflect in the footer; we need to rebuild the
project.

Alternatively, we can take the name and version dynamically from the
app (http://bit.ly/29Dbmdxj) object of Electron and forward it as an IPC
event to the renderer.

Now, we will start our previously installed release and this time, we will observe the
autoUpdater reports in statusbar. As the new release is downloaded, we will get the
following confirmation window:

Tell me your name

chat =

The spplication will sutometically restart to finish installing the update

] e

chalv.1.0.0

[161]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

After pressing OK, the application closes and a new window showing the installation
process pops up:

Ch chat Setup —

Ch Installing, Please Wait...

When it's done, start the updated application. Note that the footer now contains the latest
released version:

Tell me your name

chatv.1.0.1

[162]

Creating a Chat System with Electron and React — Enhancement, Testing, and Delivery

Summary

We've completed our chat application. We started this chapter by programming the actions
of the title bar. On the way, we learned how to control application window state in Electron.
We looked into the WebSockets technology on the example of simple echo server and the
accompanying client. Going deeper, we designed chat services based on WebSockets. We
bound client events to the component states. We were introduced to the Jest testing
framework and examined a generic approach to unit-testing React components. Besides, we
created regression tests for both stateless and stateful components. We packaged our
application and built an installer. We fiddled with publishing releases and made the
application update whenever a new release is available.

[163]

Creating a Screen Capturer
with NW.js, React, and Redux —
Planning, Design, and
Development

In this chapter, we are starting a new application—screen capturer. With this tool, will be
able to take screenshots and record screencasts. We will build the application using the
React components of the Material Ul toolkit, which implements Google's Material Design
specification. We already gained some experience with React while working on the chat
example. Now, we are taking a step further towards scalable and highly maintainable
application development. We are going to have an introduction to one of the hottest
libraries of the time that called Redux, which manages the application state.

At the end of the chapter, we will have a prototype, which already responds to user actions,
but misses the service to capture display input and save it in a file.

Application blueprint

This time, we will develop a screen capturer, a little tool capable of taking screenshots and
recording screencasts.

Creating a Screen Capturer with NW.js, React, and Redux — Planning, Design, and Development

The core idea can be expressed with the following user stories:

e As auser, I can take a screenshot and save it as a . png file
e Asauser, I can start recording a screencast
e As auser, I can start recording the screencast and save it as . webm file

Additionally, I expect a notification to appear when a screenshot or screencast file is saved. I
also would like to have the application presented in the system notification area (Tray) and
to respond to specified global hot-keys. With a help of WireframeSketcher (http://wirefra
mesketcher.com/), I illustrated my vision with the following wireframe:

¥ Screen Capturer ®
©n =
SCREENSHOT ANIMATION

File name pattern

]qcrr‘r‘mhn‘r[N]_pnq |

¥ Screen Capturer ®
® =
SCREENSHOT ANIMATION

File name paltern

]animation{N}.webm | - ‘

[165]

Creating a Screen Capturer with NW.js, React, and Redux — Planning, Design, and Development

The wireframe implies a Tabbed Document Interface (TDI) with two panels. The first one,
labeled as Screenshot, allows us to take a screenshot (photo icon) and set the filename
pattern for the output file. The second panel (Animation) looks pretty much the same,
except the action button is intended to start screencast recording. As soon as a user hits the
button, it gets replaced with the stop recording button and vice versa.

Setting up the development environment

We will create this application with NW js. As you may remember from chapter 1, Creating
a File Explorer with NW.js - Planning, Designing, and Development and Chapter 2, Creating a
File Explorer with NW.js — Enhancement and Delivery, NW.js looks up the manifest file for the
start page link and application window meta information:

. /package.json

{

"name": "screen-capturer",
"version": "1.0.0",
"description": "Screen Capturer",
"main": "index.html",
"chromium-args": "--mixed-context",
"window": {

"show": true,

"frame": false,

"width": 580,
"height": 320,
"min_width": 450,
"min_height": 320,

"position": "center",
"resizable": true,
"icon": "./assets/icon-48x48.png"

}

This time, we do not need a big window. We go with 580x320px and allow shrinking the
window size down to 450x320px. We set the window to open at the center of the screen
without the frame and built-in windowing controls.

When we were setting up NW js in the first two chapters, we had just a few dependencies.
Now, we are going to take advantage of React and, therefore, we need the corresponding
packages:

npm i -S react
npm i -S react-dom

[166]

Creating a Screen Capturer with NW.js, React, and Redux — Planning, Design, and Development

As for dev dependencies, obviously, we need NW js itself:
npm —-i -D nw

Same as for the chat application that is also based on React, we will use Babel compiler and
Webpack bundler. So, it gives us the following:

npm —-i -D webpack

npm —i -D babel-cli

npm —i -D babel-core

npm -i -D babel-loader

As we remember Babel by itself is a platform, we need to specify what exact preset it
applies to compile our sources. We already worked with these two:

npm —-i -D babel-preset-es2017
npm —i -D babel-preset-react

Now, we extend the list with the stage-3 preset
(https://babeljs.io/docs/plugins/preset-stage-3/):

npm —i -D babel-preset-stage-3

This plugin set includes all the features of the so-called Stage 3 proposal for the EcmaScript
specification. In particular, it comprised of spread/rest operators on objects, which unlocks
the most expressive syntax for the object composition.

In addition, we will apply two plugins not included in Stage 3:

npm —i -D babel-plugin-transform-class-properties
npm —i -D babel-plugin-transform-decorators-legacy

We are already familiar with the first one (ES Class Fields and Static
Properﬁes——https://github.com/tcB9/proposal—class—public—fields)frheSeCOHd
allows us to use decorators (https://github.com/tc39/proposal-decorators).

Since everything else is ready, we will extend the manifest file with automation scripts:

package. json

"scripts": {

"start": "nw .",
"build": "webpack",
"dev": "webpack -d —--watch"

[167]

Creating a Screen Capturer with NW.js, React, and Redux — Planning, Design, and Development

These targets have already been used while developing the chat application. The first one
fires up the application. The second compiles and bundles sources. And the third one runs
continuously and builds the project every time any of the source files change.

For bundling, we have to configure Webpack:

./webpack.config.js

const { join } = require("path"),
webpack = require("webpack");
BUILD_DIR = join(__dirname, "build"),
APP_DIR = join(__dirname, "Jjs");
module.exports = {

entry: join(APP_DIR, "app.jsx"),
target: "node-webkit",
devtool: "source-map",
output: {
path: BUILD_DIR,
filename: "app.Jjs"
}I
module: |
rules: [
{
test: /.jsx?$/,
exclude: /node_modules/,
use: [{
loader: "babel-loader",
options: {
presets: ["es2017", "react", "stage-3" 1],
plugins: ["transform-class-properties", "transform-decorators-
legacy"]

}
}i

So Webpack will start bundling ES6 modules recursively with . /js/app. jsx. It will place
the resulting JavaScript in . /build/app.js. On the way, any . js/ . jsx file requested for
export will be compiled with Babel according to the configured presets and plugins.

[168]

Creating a Screen Capturer with NW.js, React, and Redux — Planning, Design, and Development

Static prototype

The chat application we styled using CSS is provided by the Photon framework. This time,
we are going to use ready-made React components of the Material-UI toolkit (http://www.m
aterial-ui.com). What we get as developers is reusable units confronting Google Material
Design guidelines (https://material.io/guidelines/). It ensures a good look and feel as
well as providing a unified experience on different platforms and device sizes. We can
install Material-UI with npm:

npm i -S material-ui

According to Google Material Design requirements, the application shall support different
devices, including mobile, where we need to handle specialized events, such as on-tap.
Currently, React does not support them from the box; one has to use a plugin:

npm i -S react-tap-event-plugin

We do not intend to run our application on a mobile, but without the plugin, we are going
to have warnings.

Now, when we are done with preparations, we can start scaffolding, as follows:

1. We add our startup HTML:

./index.html

<!doctype html>
<html class="no-js" lang="">

<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<title>Screen Capturer</title>
<meta
name="viewport"
content="width=device-width, initial-scale=1, user-
scalable=0, maximum-scale=1, minimum-scale=1"
>
<link
href="https://fonts.googleapis.com/icon?family=Material+Icons"
rel="stylesheet">
<link href="https://fonts.googleapis.com/css?family=Roboto"
rel="stylesheet">
<link rel="stylesheet" type="text/css"
href="./assets/main.css">
</head>

[169]

Creating a Screen Capturer with NW.js, React, and Redux — Planning, Design, and Development

<body>

<root></root>

<script src="./build/app.js"></script>
</body>

</html>

Here, in the head element, we link to three external stylesheets. The first one
(https://fonts.googleapis.com/icon?family=Material+Icons)
unlocks Material Icons (https://material.io/icons/). The second
(https://fonts.googleapis.com/css?family=Roboto) brings the
Roboto font that is extensively used in Material Design. The last one
(./assets/main.css) is our customization CSS. In the body, we set the
root container for the application. I decided, instead of a custom element for
readability, we could use an ordinary div instead. At the end, we load the
JavaScript (. /build/app.js) generated by Webpack according to our
configuration.

2. We add the custom styles that we have already referred in main.css:

./assets/main.css

html {
font-family: 'Roboto', sans-serif;

}

body {
font-size: 13px;
line-height: 20px;
margin: 0;

}
3. We create the entry point script:
./js/app.Jjsx
import React from "react";
import { render } from "react-dom";

import App from "./Containers/App.jsx";

render (<App />, document.querySelector("root"));

[170]

Creating a Screen Capturer with NW.js, React, and Redux — Planning, Design, and Development

Here, we import the App container component and render it into the <root > element of the
DOM. The component itself will look as follows:

./js/Containers/App.Jjsx

import React, { Component } from "react";

import injectTapEventPlugin from "react-tap-event-plugin";

import Main from "../Components/Main.jsx";

import { deepOrange500 } from "material-ui/styles/colors";

import getMuiTheme from "material-ui/styles/getMuiTheme";

import MuiThemeProvider from "material-ui/styles/MuiThemeProvider";

injectTapEventPlugin () ;

const muiTheme = getMuiTheme ({
palette: {
accentlColor: deepOrange500
}
1)

export default class App extends Component {
render () A
return (
<MuiThemeProvider muiTheme={muiTheme}>
<Main />
</MuiThemeProvider>
)i

}

At this point, we wrap the application pane (Main) with the Material UI theme provider.
With the getMuiTheme function imported from the Material Ul package, we describe the
theme and pass the derived configuration to the provider. As mentioned previously, we
have to apply injectTapEventPlugin to enable the custom events in React that are used
by the framework.

Now is the time to add presentational components. We start with the main layout:
./Jjs/Components/Main. jsx
import React, {Component} from "react";

import { Tabs, Tab } from "material-ui/Tabs";
import FontIcon from "material-ui/FontIcon";

import TitleBar from "./TitleBar.jsx";
import ScreenshotTab from "./ScreenshotTab.jsx";

[171]

Creating a Screen Capturer with NW.js, React, and Redux — Planning, Design, and Development

import AnimationTab from "./AnimationTab.jsx";

class Main extends Component {

render () A
const ScreenshotIcon = <FontIcon className="material-
icons">camera_alt</FontIcon>;
const AnimationIcon = <FontIcon className="material-

icons">video_call</FontIcon>;

return (
<div>
<TitleBar />
<Tabs>
<Tab
icon={ScreenshotIcon}
label="SCREENSHOT"
/>
<Tab
icon={AnimationIcon}
label="ANIMATION"
/>
</Tabs>
<div>
{ true
? <ScreenshotTab />
<AnimationTab />
t
</div>
</div>

)

export default Main;

This component comprises the title bar, two tabs (Screenshot and Animation), and
conditionally, either the ScreenshotTab panel or AnimationTab. For rendering the tab
menu, we apply the Material UI Tabs container and the Tab component for child items. We
also use the Font Icon Material Ul component to render Material Design icons. We assign
icons declared at the beginning of the render method to corresponding tabs by using props:

./Jjs/Components/TitleBar. jsx

import React, { Component } from "react";

[172]

Creating a Screen Capturer with NW.js, React, and Redux — Planning, Design, and Development

import AppBar from 'material-ui/AppBar';
import IconButton from 'material-ui/IconButton';
const appWindow = nw.Window.get ();

export default function TitleBar() {

const iconElementLeft = <IconButton
onClick={ () => appWindow.hide ()}
tooltip="Hide window"
iconClassName="material-icons">arrow_drop_down_circle</IconButton>,

iconElementRight= <IconButton

onClick={ () => appWindow.close() }
tooltip="Quit"
iconClassName="material-icons">power_settings_new</IconButton>;

return (<AppBar
className="titlebar"
iconElementLeft={iconElementlLeft}
iconElementRight={iconElementRight}>
</AppBar>) ;

}

We implement the title bar with the AppBar Material UI component. Like in the previous
example, we preliminarily define icons (this time, by using the IconButton component)
and pass them to AppBar with props. We set inline handlers for the IconButton click
event. The first one hides the window and the second closes the application. What is more,
we set a custom CSS class titlebar to AppBar, because we are going to use this area as a
window handle for drag and drop. So, we extend our custom style sheet:

./assets/main.css
.titlebar {

-webkit-user—-select: none;
-webkit-app-region: drag;

.titlebar button {
-webkit-app-region: no-drag;
}
Now, we need a component representing tab panels. We start with ScreenshotTab:

./Jjs/Components/ScreenshotTab. jsx

import React, { Component } from "react";

[173]

Creating a Screen Capturer with NW.js, React, and Redux — Planning, Design, and Development

import IconButton from "material-ui/IconButton";
import TextField from "material-ui/TextField";

const TAB_BUTTON_STYLE = {
fontSize: 90
Fi

const SCREENSHOT_DEFAULT_FILENAME = "screenshot{N}.png";
export default class ScreenshotTab extends Component {

render () {
return (
<div className="tab-layout">
<div className="tab-layout__item">
<TextField
floatingLabelText="File name pattern”
defaultValue={SCREENSHOT_DEFAULT_FILENAME }
/>

</div>
<div className="tab-layout__item">

<IconButton
tooltip="Take screenshot"”
iconClassName="material-icons"
iconStyle={TAB_BUTTON_STYLE}>add_a_photo</IconButton>
</div>
</div>

}

Here, we use IconButton for the Take a screenshot action. We make it extra large by
passing it with props custom styling (TAB_BUTTON_STYLE). In addition, we apply the
TextField component to render text input in the style of Material Design.

The second tab panel will be quite similar:
./js/Components/AnimationTab. jsx

import React, { Component } from "react";
import IconButton from "material-ui/IconButton";
import TextField from "material-ui/TextField";

const TAB_BUTTON_STYLE = {
fontSize: 90

}i

[174]

Creating a Screen Capturer with NW.js, React, and Redux — Planning, Design, and Development

const ANIMATION_DEFAULT_FILENAME = "animation{N}.webmn";
export default class AnimationTab extends Component {

render () {
return (
<div className="tab-layout">
<div className="tab-layout__item">
<TextField
floatingLabelText="File name pattern”
defaultValue={ANIMATION_DEFAULT_FILENAME }
/>
</div>
<div className="tab-layout__item">

{ true ? <IconButton
tooltip="Stop recording"
iconClassName="material-icons"
iconStyle={TAB_BUTTON_STYLE}>videocam_off</IconButton>
<IconButton
tooltip="Start recording"
iconClassName="material-icons"
iconStyle={TAB_BUTTON_STYLE}>videocam</IconButton> }
</div>
</div>

}

The only difference it makes here is the conditional rendering of either the Start
recording button or Stop recording.

And that is pretty much everything for the static prototype. We just need to bundle the
application:

npm run build
And fire it up:

npm start

[175]

Creating a Screen Capturer with NW.js, React, and Redux — Planning, Design, and Development

You will get the following output:

© Screen Capturer

SCREENSHOT ANIMATION

screenshot{N}.png a

Comprehending redux

We learned to manage the component state while working on the chat application. It was
quite sufficient for that small example. However, as the application grows larger, you may
notice that multiple components tend to share the state. We know how to lift the state up.
But which exact component then shall manage the state? Where does the state belong? We
can avoid this ambiguity by drawing on Redux, a JavaScript library known as a predictable
state container. Redux implies an application-wide state tree. When we need to set the state
for a component, we update the corresponding node in the global state tree. All the
subscribed modules immediately receive the updated state tree. Thus, we can always easily
find out what is going on with the application by checking the state tree. We can save and
restore the entire application state at will. Just imagine, with a little effort, we can
implement time traveling through application state history.

I presume you are probably a bit confused now. The approach, if you have no experience
with it or its predecessor Flux, may look strange. In fact, it's surprisingly easy to grasp when
you start working with it. So, let's jump in.

Redux has three fundamental principles:

1. Everything that happens within the application is represented by a state.
2. The state is read-only.

3. State mutations are made with pure functions that take the previous state,
dispatch action, and return the next state.

[176]

Creating a Screen Capturer with NW.js, React, and Redux — Planning, Design, and Development

We receive new states by dispatching actions. An action is a plain object with the only
mandatory field type that accepts a string. We are allowed to set as many arbitrary fields as
we wish for the payload:

Store (state A)
{

nav: {
activeTab: "SCREENCAST"
h
screencast: {
isRecording: false
}
}

subscri_ba’ (prevStatie, action) dispatch(action)
'Y o

View Action Creator

.

A\

% newState

v

Store (state B)

{
3 nav: {
activeTab: "SCREENSHOT"
\\ }l

screencast: {
isRecording: false
}

}

The preceding figure depicts the following flow:

1. We have the store in a particular state; let's say A.
2. We dispatch an action (created by a pure function, called Action Creator).

3. That invokes the Reducer function with arguments: state object (representing
state A) and the dispatched action object.

[177]

Creating a Screen Capturer with NW.js, React, and Redux — Planning, Design, and Development

4. The Reducer clones the supplied state object and modifies the clone object
according to the scenario defined for the given action.

5. The Reducer returns the object representing the new store, State B.

6. Any component connected to the store receives the new state and calls the
render method to reflect the state change in the view.

For example, in our application, we are going to have tabs. When a user clicks on all of
them, the corresponding panel is supposed to show up. So, we need to represent the current
activeTab in the state. We can do it as follows:

const action = {
type: "SET_ACTIVE_TAB",
activeTab: "SCREENSHOT"

bi

However, we dispatch actions not directly, but via a function, which is called
actionCreator:

const actionCreatorSetActiveTab = (activeTab) => {
return <
type: "SET_ACTIVE_TAB",
activeTab
bi
bi

The function takes zero or more input arguments and produces the action object.

The Action indicates that something happened, but doesn't change the state. That is a task
of another function called Reducer. Reducer receives as a parameter of an object
representing the previous state and the last dispatched action object. According to the
action type and payload, it produces a new state object and returns it:

const initialState = {
activeTab: ""
}i
const reducer = (state = initialState, action) => {
switch (action.type) {
case "SET_ACTIVE_TAB":
return { ...state, activeTab: action.activeTab };
default:

return state;

bi

[178]

Creating a Screen Capturer with NW.js, React, and Redux — Planning, Design, and Development

In the previous example, we defined the initial application state in the constant
initialstate. We make it the default function parameter (https://mzl.1a/2qgdNréin)
with the statement state = initialState. It means that when nothing is passed with
the arguments, state takes the value of initialState.

Pay attention to how we get a new state object. We declare a new object literal. We are
destructuring the previous state object in it and extending it with the activeTab key-value
pair set from action payload. Reducer must be a pure function, so we could not change a
value passed in the state object. You know that, with parameters, we receive state as a
reference, so if we simply changed the value of the act iveTab field in state, the
corresponding object outside the function scope would have been impacted through the
link. We have to ensure the previous state is immutable. So, we create a new object for that.
Destructuring is a considerably new approach. If you do not feel comfortable with it, you
can go with Object.assign:

return Object.assign({}, state, { activeTab: action.activeTab });

For our application, we will use the only reducer, but in general, we may have many. We
can use the combineReducers function exported by redux to combine multiple reducers
so that each of them represents a separate leave of the global state tree.

We pass to createstore function of redux the reducer (can be also a product of
combineReducers). The function produces the store:

import { createStore } from "redux";
const store = createStore(reducer);

If we render the React application on server-side, we can expose the state
object into the JavaScript global scope (for example,
window.STATE_FROM_SERVER) and connect it from the client:

const store = createStore(reducer,
window.STATE_FROM_SERVER) ;

And now is the most exciting part. We subscribe to store events:

store.subscribe (() => {
console.log(store.getState());

P

We will then dispatch an action:

store.dispatch(actionCreatorSetActiveTab ("SCREENSHOT"));

[179]

Creating a Screen Capturer with NW.js, React, and Redux — Planning, Design, and Development

While dispatching, we created an action of the type SET_ACTIVE_TAB with activeTab set
to SCREENSHOT in the payload. Therefore, console. log in the store update handler prints
the new state updated accordingly:

{
activeTab: "SCREENSHOT"

}

Introducing the application state

After this brief tour into Redux, we will apply the newly obtained knowledge in practice.
First, we will install the redux package:

npm i -S redux

We will also use the additional helper library redux-act
(https://github.com/pauldijou/redux-act) to simplify the declaration of action creators
and reducers. By using this library, we can use the action creator functions as references
within reducers, abandoning the switch(action.type) construction in favor of a
shorter map syntax:

npm i -S redux-act
For screen capture, we should perform the following actions:

e SET_ACTIVE_TAB: It receives the identifier of the selected tab

® TOGGLE_RECORDING: It receives t rue when screencast recording starts and
false when it ends

e SET_SCREENSHOT_FILENAME: It receives the output filename in the panel
Screenshot

® SET_SCREENSHOT_INPUT_ERROR: It receives a message when an input error
occurs

e SET_ANIMATION_FILENAME: It receives an output filename in the panel
Animation

e SET_ANIMATION_INPUT_ERROR: It receives a message when an input error
occurs

[180]

Creating a Screen Capturer with NW.js, React, and Redux — Planning, Design, and Development

The implementation will look as follows:
./js/Actions/index. s

import { createStore } from "redux";
import { createAction } from "redux-act";

export const toggleRecording = createAction("TOGGLE_RECORDING",
(toggle) => ({ toggle }));
export const setActiveTab = createAction("SET_ACTIVE_TAB",
(activeTab) => ({ activeTab }));
export const setScreenshotFilename = createAction (
"SET_SCREENSHOT_FILENAME",
(filename) => ({ filename }));
export const setScreenshotInputError = createAction(
"SET_SCREENSHOT_INPUT_ERROR",
(msg) => ({ msg }));
export const setAnimationFilename = createAction("SET_ANIMATION_FILENAME",
(filename) => ({ filename }));
export const setAnimationInputError = createAction (
"SET_ANIMATION_INPUT_ERROR",
(msg) => ({ msg }));

Instead of the canonical syntax, we have:

export const setActiveTab = (activeTab) => {
return {
type: "SET_ACTIVE_TAB",
activeTab
Fi
}

We go here with a shorter one, achieved with the createAction function of redux-act:

export const setActiveTab = createAction("SET_ACTIVE_TAB",
(activeTab) => ({ activeTab }));

Another function, createReducer, exported by redux-act, makes the reducer declaration
even shorter:
./js/Reducers/index.js

import createStore } from "redux";
import createReducer } from "redux—act";
import as Actions from "../Actions";

import { TAB_SCREENSHOT, SCREENSHOT_DEFAULT_FILENAME,
ANIMATION_DEFAULT_FILENAME } from "../Constants";

* A

[181]

Creating a Screen Capturer with NW.js, React, and Redux — Planning, Design, and Development

const DEFAULT_STATE = {
isRecording: false,
activeTab: TAB_SCREENSHOT,
screenshotFilename: SCREENSHOT_DEFAULT_FILENAME,
animationFilename: ANIMATION_DEFAULT_FILENAME,
screenshotInputError: "",
animationInputError:

Yi

export const appReducer = createReducer ({

[Actions.toggleRecording]: (state, action) => ({ ...state,
isRecording: action.toggle }),

[Actions.setActiveTab]: (state, action) => ({ ...state, activeTab:
action.activeTab }),

[Actions.setScreenshotFilename]: (state, action) => ({ ...state,
screenshotFilename: action.filename }),

[Actions.setScreenshotInputError]: (state, action) => ({ ...state,
screenshotInputError: action.msg }),

[Actions.setAnimationFilename]: (state, action) => ({ ...state,
animationFilename: action.filename }),

[Actions.setAnimationInputError]: (state, action) => ({ ...state,

animationInputError: action.msg })
}, DEFAULT_STATE);

We do not need to describe reducer conditioning with a switch statement like we did
during Redux's introduction:

const reducer = (state = initialState, action) => {
switch (action.type) {
case "SET_ACTIVE_TAB":
return { ...state, activeTab: action.activeTab };
default:

return state;
}
bi

The function createReducer does it for us:

export const appReducer = createReducer ({

[Actions.setActiveTab]: (state, action) => ({ ...state, activeTab:
action.activeTab }),
}, DEFAULT_STATE);

The function takes in a map-like object, where we use action creator functions as keys (for
example, [Actions.setActiveTab]). Yeah, for dynamic object keys, we have to go
with the syntax called Computed property names at https://mz1.1la/2erqyrj. As object
values, we use callbacks to generate the new state.

[182]

Creating a Screen Capturer with NW.js, React, and Redux — Planning, Design, and Development

In this sample, we clone the old state ({ . . . state}) and change in the derived object
activeTab property value.

If you noted, we used imports from Constants/index. js. In that module, we are going to
encapsulate the application scope constants:

./js/Constants/index.Jjs

export const TAB_SCREENSHOT = "TAB_SCREENSHOT";

export const TAB_ANIMATION = "TAB_ANIMATION";

export const SCREENSHOT_DEFAULT_FILENAME = "screenshot{N}.png";
export const ANIMATION_DEFAULT_FILENAME = "animation{N}.webm";

Well, we have actions and a reducer. That's the time to create the store and connect it to the
application:

./js/Containers/App.jsx

import React from "react";

import { render } from "react-dom";
import { createStore } from 'redux';
import { Provider } from "react-redux";
import App from "./Containers/App.Jjsx";
import { appReducer } from "./Reducers";

const store = createStore(appReducer);

render (<Provider store={store}>
<App />
</Provider>, document.querySelector("root"));

We build the store using the createstore function of redux. Then, we wrap the App
component with Provider provided by the react-redux package. Do not forget to install
the dependency:

npm i -S react-redux

The Provider takes in a previously created store with props and makes it available for
another react-redux function, connect. We will use this function in our App container
component:

./js/Containers/App.Jjsx

/).

import { connect } from "react-redux";
import { bindActionCreators } from "redux";
import * as Actions from "../Actions";

[183]

Creating a Screen Capturer with NW.js, React, and Redux — Planning, Design, and Development

const mapStateToProps = (state) => ({ states: state });
const mapDispatchToProps = (dispatch) => ({
actions: bindActionCreators(Actions, dispatch)

1)

class App extends Component {
render () A
return (
<MuiThemeProvider muiTheme={muiTheme}>
<Main {...this.props} />
</MuiThemeProvider>) ;

}
export default connect (mapStateToProps, mapDispatchToProps) (App);

Here, we define two mapper functions that connect accepts as arguments. The first
mapStateToProps maps the stored state to the props. With the statement (state) =>
({ states: state }), we make the store state available in the component as
this.props.states. The second mapDispatchToProps maps our actions to the props.
The callback receives automatically from the connect function dispatch bound to the
store. Together with the function bindActionCreators of redux, we can use it to map a
set of actions to the props. So, we imported all the available actions as a plain object,
Actions, and passed it to bindActionCreators. The return is mapped to the actions
field, and therefore will be available within the component as this.props.actions.

Finally, we pass the component to a function produced by connect. It extends the
component, which we export upstream. This expression may look a bit confusing. Actually,
what we do here is we modify the behavior of the component without explicitly modifying
the component itself. Traditionally, in OOP languages, we used to achieve it with the
]Decoraknfpaﬂern(https://en.wikipedia.org/wiki/Decorator_pattern).hknwaday&
many languages have built-in capacities, such as attributes in C#, annotations in Java, and
decorators in Python. ECMAScript also has a proposal,
https://t039.github.io/proposal—decorators/,fordecoraknB.Thus,bythﬁngthe
declarative syntax, we can modify the shape of a class or a method without touching its
code. The plugin babel-plugin-transform-decorators-legacy, which we used in our
Webpack configuration unlocks this feature to us. So, we can already use it for connecting
the component to the store:

@connect (mapStateToProps, mapDispatchToProps)
export default class App extends Component {
render () A
return (
<MuiThemeProvider muiTheme={muiTheme }>

[184]

Creating a Screen Capturer with NW.js, React, and Redux — Planning, Design, and Development

<Main {...this.props} />
</MuiThemeProvider>)

From the container, we render the Main component and pass to it all the props of the

container (by destructuring the parent props { . ..this.props}). So, Main receives the

mapped state and actions in the props. We can use the following:
./js/Components/Main. jsx

import React, {Component} from "react";

import { Tabs, Tab } from "material-ui/Tabs";

import FontIcon from "material-ui/FontIcon";

import TitleBar from "./TitleBar.jsx";

import ScreenshotTab from "./ScreenshotTab.jsx";
import AnimationTab from "./AnimationTab.jsx";
import { TAB_SCREENSHOT, TAB_ANIMATION } from "../Constants";

class Main extends Component {
onTabNav = (tab) => {
const { actions } = this.props;
return () => {
actions.setActiveTab (tab);
}i

}
render () {
const ScreenshotIcon = <FontIcon className="material-
icons">camera_alt</FontIcon>;
const AnimationIcon = <FontIcon className="material-
icons">video_call</FontIcon>;
const { states, actions } = this.props;
return (
<div>
<TitleBar />
<Tabs>
<Tab

onClick={this.onTabNav (TAB_SCREENSHOT)}
icon={ScreenshotIcon}
label="SCREENSHOT"

/>

<Tab
onClick={this.onTabNav (TAB_ANIMATION) }
icon={AnimationIcon}

[185]

Creating a Screen Capturer with NW.js, React, and Redux — Planning, Design, and Development

label="ANIMATION"
/>
</Tabs>
<div>

{ states.activeTab === TAB_SCREENSHOT
? <ScreenshotTab {...this.props} />
<AnimationTab {...this.props} />

}

</div>

</div>

)

export default Main;

As you remember, this component serves the tab menu. We subscribe here for the click on
tab events. We do not subscribe to the handler directly, but a function, this.onTabNav,
bound to the instance scope that produces the intended handler according to the passed-in
tab key. The constructed handler receives the key with the closure and passes it to the
setActiveTab action creator extracted from this.props.actions. The action gets
dispatched and the global state changes. From the component's perspective, it is like calling
setState, which causes the component to update. The act iveTab field extracted from
this.props.state changes its value respectively and the component renders the panel
matching the key passed with this.onTabNav.

As for the panel, we can already connect the filename form to the state:
./Jjs/Components/ScreenshotTab. jsx

import React, { Component } from "react";

import IconButton from "material-ui/IconButton";

import TextField from "material-ui/TextField";

import { TAB_BUTTON_STYLE, SCREENSHOT_DEFAULT_FILENAME } from
"../Constants";

export default class ScreenshotTab extends Component {
onFilenameChange = (e) => {
const { wvalue } = e.target;
const { actions } = this.props;
if (!'value.endsWith(".png") || value.length < 6) {
actions.setScreenshotInputError("File name cannot be empty and must
end with .png");
return;

[186]

Creating a Screen Capturer with NW.js, React, and Redux — Planning, Design, and Development

actions.setScreenshotInputError("");
actions.setScreenshotFilename (value);

render () {
const { states } = this.props;
return (
<div className="tab-layout">
<div className="tab-layout__item">
<TextField

onChange={this.onFilenameChange}
floatingLabelText="File name pattern”
defaultValue={SCREENSHOT_DEFAULT_FILENAME }
errorText={states.screenshotInputError}

/>

</div>
<div className="tab-layout__item">

<IconButton
tooltip="Take screenshot"”
iconClassName="material-icons"
iconStyle={TAB_BUTTON_STYLE}>add_a_photo</IconButton>
</div>
</div>

}

Here, we subscribe the this.onFilenameChange handler for the change event on
TextField. So, if the user types in this.onFilenameChange it invokes and validates the
input. If the current value is less than six characters in length or does not end with .png, it
is considered as invalid. So, we use the set Screenshot InputError action creator
extracted from this.props.actions to set a value for the error message. As soon as it is
done, the screenshotInputError field of the state changes as well as the errorText
property of the TextField component, and the error message shows up. If the filename is
valid, we dispatch the set Screenshot InputError action to reset the error message. We
change the screenshot filename in the state tree by calling the action creator
setScreenshotFilename.

[187]

Creating a Screen Capturer with NW.js, React, and Redux — Planning, Design, and Development

If you have noticed, we encapsulated the IconButton custom style in the constants
module, so it could be shared between both panels. But we have to add the new constant to
the module:

./Jjs/Constants/index. Js

export const TAB_BUTTON_STYLE = {
fontSize: 90
}i

The second panel, in addition to form validation, also changes the state field i sRecording:
./Jjs/Components/AnimationTab. jsx

import React, { Component } from "react";

import IconButton from "material-ui/IconButton";

import TextField from "material-ui/TextField";

import { TAB_BUTTON_STYLE, ANIMATION_DEFAULT_FILENAME } from
"../Constants";

export default class AnimationTab extends Component {

onRecord = () => {
const { states } = this.props;
this.props.actions.toggleRecording(true);
}
onStop = () => {
this.props.actions.toggleRecording(false);
}
onFilenameChange = (e) => {
const { value } = e.target;
const { actions } = this.props;
if (!'value.endsWith(".webm") || value.length < 7) {

actions.setAnimationInputError("File name cannot be empty and must
end with .png");

return;

}

actions.setAnimationInputError("");

actions.setAnimationFilename (value);
}
render () {

const { states } = this.props;

return (

<div className="tab-layout">
<div className="tab-layout__item">
<TextField
onChange={this.onFilenameChange}
floatingLabelText="File name pattern"

[188]

Creating a Screen Capturer with NW.js, React, and Redux — Planning, Design, and Development

defaultValue={ANIMATION_DEFAULT_FILENAME }
errorText={states.animationInputError}
/>
</div>
<div className="tab-layout__item">

{ states.isRecording ? <IconButton
onClick={this.onStop}
tooltip="Stop recording"
iconClassName="material-icons"
iconStyle={TAB_BUTTON_STYLE}>videocam_off</IconButton>

<IconButton
onClick={this.onRecord}
tooltip="Start recording"
iconClassName="material-icons"
iconStyle={TAB_BUTTON_STYLE}>videocam</IconButton> }
</div>
</div>

}

We subscribe the handlers for click events on both the Start recording and Stop recording
buttons. When a user hits the first one, the this.onRecord handler invokes the action
creator, toggleRecording, which sets the state field i sRecording to true. It causes the
component to update. According to the new state, it replaces the Start recording button
with the Stop recording one. And vice versa, if Stop recording is clicked in the
this.onStop handler, we call toggleRecording to set the state property isRecording to
false. The component updates respectively.

Now, we can build the application and run it:

npm run build
npm start

Observe that when we are switching tabs, editing file names, or toggling start/stop
recording, the application responds as we intend.

[189]

Creating a Screen Capturer with NW.js, React, and Redux — Planning, Design, and Development

Summary

In this chapter, we familiarized ourselves with the basics of Google's Material Design. We
built the static prototype from ready-made React components of the Material-UI set. We
had an introduction into the Redux state container. We defined our application state tree
and set state mutators. We created the global state store and connected it to the container
component. We passed exposed action creators and state tree trunk into presentation
components with the props. We examined shorter action/reducer declaration syntaxes
provided by the redux-act library. We implemented it by using Redux state machine
actions, such as tabbed navigation, recording toggle, and form validation.

[190]

Creating a Screen Capturer
with NW.js: Enhancement,
Tooling, and Testing

In chapter 5, Creating a Screen Capturer with NW.js, React, and Redux — Planning, Design, and
Development, we applied the Redux store to manage the application state. Now, we are
going to get a look at how to use middleware for tooling Redux and how to unit-test Redux.

The main goal of this chapter though is to eventually teach our Screen Capturer to take
screenshots and record screencasts. For that, you will learn how to use WebRTC APIs to
capture and record a media stream. We will examine generating a still frame image from
the stream by using canvas. We will put in practice the Notification API to inform the user
about actions performed regardless of what window is in focus. We will add a menu to the
system tray and bind it with the application state. We will make capturing action available
via global keyboard shortcuts.

Tooling Redux

In chapter 5, Creating a Screen Capturer with NW.js, React and Redux Planning, Design and
Development, you have learned the essentials of the Redux state container. We built a
functional prototype using Redux. However, when building your own application, you
may need to know when and what is happening to the state tree exactly.

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

Fortunately, Redux accepts middleware modules to deal with cross-cutting concerns. The
concept is pretty similar to the one of the Express framework. We can extend Redux by
hooking third-party modules on the event when an action gets dispatched but hasn't yet
reached the reducers. It doesn't make much sense to write a custom logger as many are
already available (http://bit.1ly/2qInxmL). For example, for tracing changes in the state
tree, we can use the redux-diff-logger module that reports only the state diffs, which
makes it much easier to read. So, we will install the package (npm i -S redux-diff-
logger) and add a few lines to the entry script:

./Jjs/app.jsx

import { createStore, applyMiddleware, compose } from "redux";
import logger from 'redux-diff-logger';
const storeEnhancer = compose (
applyMiddleware (logger)
)i

const store = createStore(appReducer, storeEnhancer);

Here, we export logger from redux-diff-logger and pass it in the applyMiddleware
function of the redux module to create a store enhancer. The store enhancer applies a given
middleware to the dispatch method of the store. With the compose function of redux, we
can combine multiple enhancers. We pass the derivative as the second argument to the
createStore function.

Now, we can build the project and start it up. We play a bit with the Ul and take a look in
DevTools. The JavaScript console panel will output the state diffs we caused:

[192]

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

Developer Tools - chrome-extension://nmkfdkgfcFgkpmlhpeeibbmcdofmkjmj/index.html

[w Elements Console Sources Network Timeline Profiles Application Security Audits :

® ¥ top v Preserve log

Download the React DevTools and use an HTTP server (instead of a file: URL) for a better ReactDOM.{s73399:73
development experience: https://fb.me/react-devtools

¥ diff @ 16:53:56 index.js?629b:72
— no diff — index.js7629b:86

¥ diff @ 16:53:56 index.js7629b:72
CHANGED: screenshotFilename screenshot{N}.png - picture{N}.png index.is7629b:83

¥ diff @ 16:54:20 index.js?629b:72
CHANGED: activeTab TAB SCREENSHOT - TAB AMIMATION index.js7629b:83

¥ diff @ 16:54:37 index.js?629b:72
— no diff — index.{s?629b: 86

¥ diff @ 16:54:37 index.js?629b:72
CHANGED: animationFilename animation{N}.webm - screencast{N}.webm index.js7629b:83

Though the redux-diff-logger middleware we receive reports in the JavaScript console of
DevTools as we perform any action causing state change. For example, we modified
screenshot filename template and that immediately reflected in the console. In fact we
received a whole new object for the state tree, but redux-diff-logger is smart enough to
show us only what really interested in - the diff of the state.

[193]

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

Redux DevTools

Logging reports is already something, but it would be more useful if we could get a tool like
DevTools to interact with the state. Third-party package redux-devtools brings in an
extensible environment, which supports state live-editing and time traveling. We will
examine it in conjunction with two additional modules, redux-devtools—-log-monitor
and redux-devtools-dock-monitor. The first allows us to inspect the state and time
travel. The second is a wrapper that docks the Redux DevTools Ul to window edges when
we press the corresponding hot-key. To see it in action, we create a new component out of
custom describing DevTools:

./js/Components/DevTools. jsx

import React from "react";

import { createDevTools } from "redux-devtools";
import LogMonitor from "redux-devtools-log-monitor";
import DockMonitor from "redux-devtools-dock-monitor";

const DevTools = createDevTools (
<DockMonitor toggleVisibilityKey="ctrl-h"
changePositionKey="ctrl-g"
defaultPosition="bottom"
defaultIsVisible={true}>
<LogMonitor theme="tomorrow" />
</DockMonitor>
)i
export default DevTools;

We use the createDevTools function to create the component. It takes in JSX, where we
configure visibility and the position of React DevTools Ul through the props of
DockMonitor and color theme in LogMonitor.

The derived component exposes the method instrument, which returns as a store enhancer.
So, we can pass it to the compose function:

./js/app.jsx

import DevTools from "./Components/DevTools.Jjsx";
const storeEnhancer = compose (
applyMiddleware (logger),
DevTools.instrument ()
)i
const store = createStore(appReducer, storeEnhancer);

[194]

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

In the DevTools component itself, we have to add it to the DOM:

render (<Provider store={store}>
<div>
<App />
<DevTools />
</div>
</Provider>, document.querySelector("root"));

Now, when we run the application, we can see the dock. We can press Ctrl + Q to change its
position and Ctrl + H to hide or to show it:

© Screen Capturer
o] [+
SCREENSHOT ANIMATION

animation{N}.webm

Revert
animation{inj

SET_ACTIVE_TAB

. "TAB_ANIMATION"

[195]

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

Unit-testing Redux

We have already fiddled with the Jest testing framework in chapter 4, Chat System with
Electron and React: Enhancement, Testing, and Delivery (Writing Unit-tests section). Redux
introduces new concepts, such as actions and reducers. Now, we are going to unit-test
them.

As you may remember, to run Jest, we need to configure Babel:
.babelrc

{
"presets": [
["env", {
"targets": { "node": 7 },
"useBuiltIns": true
1
"react",
"stage-3"
J 4
"plugins": [
"transform-class-properties”,
"transform-decorators—legacy"

}

Again, with env preset, we target Babel on Node.js 7 and enable the extra plugins we used

in the webpack configuration.

Testing action creator

Actually, that's quite simple with action creators because they are pure functions. We pass
in an input according to the function interface and verify the output:

./js/Actions/index.spec.]s

import { createStore } from "redux";

import { toggleRecording } from "./index";
describe ("Action creators", () => {
describe ("toggleRecording", () => {
it ("should return a valid action", () => {

const FLAG = true,
action = toggleRecording(FLAG);
expect (action.payload).toEqual({ toggle: FLAG });
P

[196]

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

1)
1)

We have written a test for the toggleRecording function. We assert the fact that the
function produces an action object with { toggle: FLAG } in the payload. As mentioned
in the previous chapter, any action is supposed to have a mandatory property type. When
we omit the description while calling the createAction function of the redux-act
module, the derived action creator will produce an action with dynamically generated
identifiers, which is hardly testable. However, we give it a string as the first argument, for
exanqﬂe,TOGGLE_RECORDING:

const toggleRecording = createAction("TOGGLE_RECORDING", (toggle) =>
({ toggle }));
this becomes the unique identifier and therefore we can expect it in type
property.

expect (action.type).toEqual("TOGGLE_RECORDING");

index.spec. js
Action creators
toggleRecording

Test Suites: sl total
Tests: 151 , 1 total
Snapshots: @ total

Time: 0.621s, estimated 1s

Pretty much the same way we can test every action creator in our current application.

Testing reducers

Reducers, as well as action creators, are pure functions. They accept the last state tree object
and the dispatched action in parameters and produce a new state tree object. So, when
testing a reducer, we are checking whether a given action modifies the state as intended:

./js/Reducers/index.spec.js

import { createStore } from "redux";

import { createReducer } from "redux-act";

import { TAB_SCREENSHOT, SCREENSHOT_DEFAULT_FILENAME,
ANIMATION_DEFAULT_FILENAME } from "../Constants";
import { appReducer } from "./index";

[197]

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

describe ("appReducer", () => {
it ("should return default state", () => {
const DEFAULT_STATE = {
isRecording: false,
activeTab: TAB_SCREENSHOT,
screenshotFilename: SCREENSHOT_DEFAULT_FILENAME,
animationFilename: ANIMATION_DEFAULT_FILENAME,
screenshotInputError: "",
animationInputError: ""
i
expect (appReducer ()) .toEqual(DEFAULT_STATE);
)i
1)

For the very first time, Redux calls our reducer with the undefined state. What we expect
from the reducer is to take a predefined object as the default state. So, if we call the function
with no arguments, it is supposed to receive at entry point the default state and return it
without modifications as no action was given.

On the other hand, we can import an action creator:

import { toggleRecording } from "../Actions";

Create an action and pass it to the reducer:

it ("should return a new state for toggleRecording action", () => {
const FLAG = true,
action = toggleRecording(FLAG),
newState = appReducer (undefined, action);
expect (newState.isRecording).toEqual(FLAG);
P

Thus, we test that the reducer produces a new state, changed in accordance with the given
action. An action is created by calling toggleRecording (true) is supposed to set the
state object property isRecording to true. That is what we assert in the test:

[198]

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

index.spec.js
Action creators
toggleRecording

index.spec.js

appReducer

Test Suites: 2 p d, 2 total
Tests: 3 d, 3 total
Snapshots: total

Time: .649s, estimated 1s

Taking a screenshot

The previously created static prototype may look fancy, but is not of much use. We need a
service capable of taking screenshots and recording screencasts.

If it was about a screenshot of the application window, we would simply use the API on
NW js:

import * as fs from "fs";
function takeScreenshot (filePath) {
appWindow.capturePage ((img) => {
fs.writeFileSync(filePath, img, "base64d");
oA
format : "png",
datatype : "raw"
}) i
}

But we need a screenshot of the screen and, therefore, we have to get access to display
input. W3C includes a specification draft, "Media Capture and Streams"
(http://bit.ly/2qTtLxX), which describes an API to capture displayed media
(mediaDevices.getDisplayMedia). Unfortunately, at the time of writing, it's not yet
supported in NW js or, to be honest, by any browser. However, we can still use
webkitGetUserMedia, which streams the desktop input. This API was once a part of
technology known as WebRTC (https://webrtc.org), designed for real-time video, audio,
and data communication.

[199]

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

Yet, currently, it is removed from the specification, but still available in both NW.js and
Electron. It seems like we don't really have a choice, so we go with it.

webkitGetUserMedia takes in the so-called MediaStreamConstraints object describing
what we want to capture and returns a promise. In our case, the constraints object may look
as follows:

{

audio: false,

video: {
mandatory: {
chromeMediaSource: "desktop",

chromeMediaSourceId: desktopStreamlId,
minWidth: 1280,
maxWidth: 1920,
minHeight: 720,
maxHeight: 1080

}

We disable audio recording, set boundaries for video (webkitGetUserMedia determines a
suitable size based on your display resolution. When the resolution does not fit the range it
causes OverconstrainedError), and describe the media source. But we need a valid
media stream ID. That we can obtain, for example, from the NW.js AP

nw.Screen.chooseDesktopMedia (["window", "screen"], (mediaStremId) => {
// mediaStremId
1) i

When combining all together, we get the following service:
./js/Service/Capturer.js

import * as fs from "fs";
const appWindow = nw.Window.get ();
export default class Capturer {
constructor () {
nw.Screen.chooseDesktopMedia (["window", "screen"], (id) => {
this.start (id);
1) i
t
takeScreenshot (filename) {
console.log("Saving screensho");
t
start (desktopStreamId) {
navigator.webkitGetUserMedia ({

[200]

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

audio: false,

video: |
mandatory: {
chromeMediaSource: "desktop",

chromeMediaSourceId: desktopStreamld,
minwWidth: 1280,
maxWidth: 1920,
minHeight: 720,
maxHeight: 1080

t
}, (stream) => {
// stream to HTMLVideoElement
}, (error) => {
console.log("navigator.getUserMedia error: ", error);

1)

}

When running it, we get a dialog prompting us to choose a media source:

Share your screen

screen-capturer wants to share the contents of your screen. Choose what you'd
like to share.

Your Entire Screen Application Window

Cancel Share

[201]

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

I do not really like this UX. I would rather make it detect desktop media. We achieve that
with the following method:

static detectDesktopStreamId(done){
const dcm = nw.Screen.DesktopCaptureMonitor;
nw.Screen.Init ();
// New screen target detected
dcm.on ("added", (id, name, order, type) => {
// We are interested only in screens
if (type !== "screen"){
return;
}
done (dcm.registerStream(id));
dcm.stop () ;
P) i
dcm.start (true, true);

}

We use DesktopCaptureMonitor of the NW.js API for detecting available media devices,
rejecting an app window (the type "screen"), and obtaining the media stream ID with the
method registerStream. Now, we replace the chooseDesktopMedia of the NW.js API
with our custom method, detectDesktopStreamId:

constructor () {
Capturer.detectDesktopStreamId((id) => {

this.start (id);

}) i

¥

Well we manage to receive the stream. We have to direct it somewhere. We can create a
hidden HTMLVideoElement and use it as a video stream receiver. We encapsulate this
functionality in a separate module:

./js/Service/Capturer/Dom. js

export default class Dom {
constructor () {
this.canvas = document.createElement ("canvas")
this.video = Dom.createVideo();
}

static createvVideo () {

const div = document.createElement ("div"),
video = document.createElement ("video");
div.className = "preview";

video.autoplay = true;
div.appendChild(video);
document .body.appendChild(div);

[202]

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

return video;
t
}

During construction, the class creates a new DIV container and video element in it. The
container gets attached to the DOM. We also need to support the new elements with CSS:

./assets/main.css

.preview {
position: absolute;
left: -999%px;
top: -999%px;
width: 1px;
height: 1px;
overflow: hidden;

}

Basically, we move the container out of view. So, the video will be streamed into a hidden
HTMLVideoElement. The task is now to capture a still frame and convert it into an image.
That we can do with the following trick:

getVideoFrameAsBase64 () |
const context = this.canvas.getContext ("2d"),
width = this.video.offsetWidth,
height = this.video.offsetHeight;
this.canvas.width = width;
this.canvas.height = height;
context.drawImage (this.video, 0, 0, width, height);
return this.canvas.toDataURL ("image/png")
.replace(/~data:image\/png;base64,/, "");
}

We create a canvas context matching the video size. By using the context method
drawImage, we draw an image from the video stream. Finally, we convert canvas to Data
URI and obtain the Base64-encoded image by striping the data: scheme prefix.

We are going to inject our Dom module instance in the Capturer service as a dependency.
For that, we need to modify the constructor:

./js/Service/Capturer.js

constructor (dom) {
this.dom = dom;
Capturer.detectDesktopStreamId((id) => {
this.start (id);
F) i

[203]

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

}
We also have to forward the media stream into HTMLVideoElement:

start (desktopStreamId) {
navigator.webkitGetUserMedia(/* constaints */, (stream) => {

this.dom.video.srcObject = stream;
}, (error) => {
console.log("navigator.getUserMedia error: ", error);

)i
}

We also add a method for saving screenshots:

takeScreenshot (filename) {
const base64Data = this.dom.getVideoFrameAsBase64 () ;
fs.writeFileSync(filename, base64Data, "base64");

}

Now, when this method is called in a component, the image gets saved silently. To tell the
truth, it's not very user-friendly. A user presses the button and receives no information
about whether the image really is saved or not. We can improve user experience by
showing a desktop notification:

const ICON = " ./assets/icon-48x48.png";
/] ...
takeScreenshot (filename) {
const base64Data = this.dom.getVideoFrameAsBase64 () ;
fs.writeFileSync(filename, base64Data, "base64");
new Notification("Screenshot saved", {
body: 'The screenshot was saved as ${filename}’,
icon: './assets/icon-48x48.png"
}) i
}

Now, when the newly created screenshot is saved, the corresponding message gets
displayed at the system level. So, even if the application window is hidden (for example, we
use system tray or a shortcut), the user still receives a notification:

Screenshot saved

Sc The screenshot was saved as
screenshot1.png

screen-capkurer

[204]

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

Recording a screencast

In fact, while building the service for taking screenshots, we have done most of the work for
screencast recording. We already have the MediaSt ream object delivered by
webkitGetUserMedia. We just need a way to define the start and end of recording and
save the collected frames in a video file. That is where we can benefit from the
MediaStream Recording API, which captures the data produced by MedaStream or
HTMLMediaElement (for example, <video>) so that we can save it. So, we modify the
service again:

./js/Service/Capturer.js

/...
const toBuffer = require("blob-to-buffer");
/] ...
start (desktopStreamId) {
navigator.webkitGetUserMedia (/* constaints */, (stream) => {
let chunks = [];
this.dom.video.srcObject = stream;
this.mediaRecorder = new MediaRecorder (stream);
this.mediaRecorder.onstop = (e) => {
const blob = new Blob(chunks, { type: "video/webm" });
toBuffer (blob, (err, buffer) => {
if (err) |

throw err;

}

this.saveAnimationBuffer (buffer);
chunks = [1];
}) i
}

this.mediaRecorder.ondataavailable = function(e) {
chunks.push(e.data);
}

}, (error) => {
console.log("navigator.getUserMedia error: ", error);

)i
}

After receiving MediaStream, we use it to make an instance of MediaRecorder. We
subscribe for the dataavailable event on the instance. The handler accepts a Blob (a file-
like object representing a frame of the stream). To make a video, we need a sequence of the
frames. So, we push every received Blob into the chunks array. We also subscribe a handler
for the stop event, which creates a new Blob of the type webm from the collected chunks.
Thus, we have a Blob representing the screencast, but we can't just save it in a file.

[205]

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

For a stream of binary data, Node.js will expect from us an instance of the Buffer class. We
use the blob-to-buffer package to convert Blob to Buffer.

In this code, we rely on two events, dataavailable and stop. The first one gets fired
when we start the recorder and the second when we stop it. These actions we make public:

record(filename){
this.mediaRecorder.start ();

this.saveAnimationBuffer = (buffer) => {
fs.writeFileSync(filename, buffer, "base6d");
new Notification("Animation saved", {

body: "The animation was saved as ${filename}",
icon: ICON

)i

}
stop () {
this.mediaRecorder.stop();

}

When the method record is called, the instance of MediaRecorder starts recording and,
on the contrary, with the stop method, it ceases the process. In addition, we define
saveAnimationBuffer callback that will be called when recording stops
(this.mediaRecorder.onstop). The callback (saveAnimationBuffer) receives with the
buf fer parameter the binary stream of the recorded screencast and saves it with the
writeFileSync method of the £s core module. Similar to a screenshot, on saving a
screencast, we create a desktop notification to inform the user about the performed action.

The service is almost ready. But as you can remember from our wireframes, the Screen
Capturer accepts a template for the filename, such as screenshot {N}.png or
animation{N}.webm, where {N} is a placeholder for the file index. Therefore, I would like
to encapsulate filesystem operations in the dedicated class, Fsys, where we can process the
template as needed:

./Jjs/Service/Capturer/Fsys.Js

import * as fs from "fs";
export default class Fsys {
static getStoredFiles(ext){
return fs.readdirSync(".")
.filter((file) => fs.statSync(file).isFile()
&& file.endsWith(ext)) || [1;
}
saveFile (filenameRaw, data, ext){
const files = Fsys.getStoredFiles(ext),
// Generate filename of the pattern like screenshot5.png

[206]

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

filename = filenameRaw.replace("{N}", files.length + 1);
fs.writeFileSync(filename, data, "base64");
return filename;

}

This class has the static method getstoredFiles, which returns an array of all the files of
a given type (extension) from the working directory. Before saving a file in the saveFile
method, we get the list of the earlier stored files and calculate the value for {N} as
files.length + 1.Thus, the very first screenshot will be saved under the name
screenshotl.png, the second as screenshot2.png, and so on.

The Fsys instance we inject in the Capturer service:

export default class Capturer {
constructor (fsys, dom){

this.fsys = fsys;

this.dom = dom;

Capturer.detectDesktopStreamId((id) => {
this.start (id);
P
}

We will instantiate the service in the entry script:
./func-services/js/app.jsx

import Fsys from "./Service/Capturer/Fsys";
import Dom from "./Service/Capturer/Don";
import Capturer from "./Service/Capturer";
const capturer = new Capturer(new Fsys(), new Dom());
render (<Provider store={store}>
<App capturer={capturer} />
</Provider>, document.querySelector("root"));

We import the Capturer class and the dependencies. While constructing Capturer, we
pass it in the instances of Fsys and Dom. The derived instance of Capturer we pass with
the props to the App component.

So, the instance of the service arrives into the ScreenshotTab component and we can use it
for taking a screenshot:

./Jjs/Components/ScreenshotTab. jsx
// Handle when clicked CAPTURE

onCapture = () => {
const { states } = this.props;

[207]

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

this.props.capturer.takeScreenshot (states.screenshotFilename);

}

Similarly, in AnimationTab, we apply the methods record and stop of the instance from the
corresponding handlers:

./js/Components/AnimationTab. jsx

// Handle when clicked RECORD
onRecord = () => {
const { states } = this.props;
this.props.capturer.record(states.animationFilename);
this.props.actions.toggleRecording(true);
}
// Handle when clicked STOP
onStop = () => {
this.props.capturer.stop();
this.props.actions.toggleRecording(false);
}

Now, after building the application, we can use it to take a screenshot and record
screencasts:

Screenshot saved
° Screen Captur The screenshot was saved as

screenshotl.png
o) screen-capturer

SCREENSHOT ANIMATION

screenshot{N}.png

| ——

From our image, we can observe that the buttons to take screenshots and record screencasts
are parts of the window Ul However, we also need to provide functionality for hiding a
window. So how do we reach capturing actions while application is hidden? The answer is
to do with system tray.

[208]

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

Taking advantage of the system tray

In chapter 2, Creating a File Explorer with NW.js — Enhancement and Delivery , we already

examined adding and managing the application menu in the system tray. Briefly, we
created menu items with nw.MenuItem, added them to the nw.Menu instance, and attached

the menu to nw. Tray. So, the boilerplate for the tray menu may look as follows:

./Jjs/Service/Tray.]js

const appWindow = nw.Window.get ();
export default class Tray {
tray = null;
constructor() |
this.title = nw.App.manifest.description;
this.removeOnExit () ;

}

getItems = () => {
return [/* */ 1;

}

render () {
if (this.tray) {
this.tray.remove();
}
const icon = "./assets/" +
(process.platform === "linux" ? "icon-48x48.png" : "icon-
32x32.png");
this.tray = new nw.Tray ({
title: this.title,
icon,
iconsAreTemplates: false
P

const menu = new nw.Menu();
this.getItems () .forEach((item) => menu.append(new nw.Menultem (
item)));

this.tray.menu = menu;

}
removeOnExit () {
appWindow.on("close", () => {
this.tray.remove();
appWindow.hide (); // Pretend to be closed already
appWindow.close (true);
P
// do not spawn Tray instances on page reload
window.addEventListener ("beforeunload", () => this.tray.remove(),

false);

[209]

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

For this application, we need the following menu items:

Take screenshot
Start recording
Stop recording
Open
Exit
Here, start recordingand Stop recording get enabled depending on the state
isRecording property. Besides, we need the Capturer instance and state properties

screenshotFilename and animationFilename to run the capturing action on user
request. So, we inject both dependencies in the Tray constructor:

./js/Service/Tray.]js

import { toggleRecording } from "../Actions";
import { SCREENSHOT_DEFAULT_FILENAME, ANIMATION_DEFAULT_FILENAME } from
", ./Constants";
export default class Tray {
// default file names
screenshotFilename = SCREENSHOT_DEFAULT_FILENAME;
animationFilename = ANIMATION_DEFAULT_FILENAME;

isRecording = false;

constructor (capturer, store) {
this.capturer = capturer;
this.store = store;

}

In addition, we defined a few instance properties. screenshotFilename and
animationFilename will receive the latest user-defined filename templates from the state.
The property isRecording will take in the corresponding value of the state when it
changes. In order to receive state updates, we subscribe for store changes:

constructor (capturer, store) {
Y
store.subscribe (() => {

const { isRecording, screenshotFilename, animationFilename } =
store.getState();

this.screenshotFilename = screenshotFilename;

this.animationFilename = animationFilename;

if (this.isRecording === isRecording) {
return;

}
this.isRecording = isRecording;
this.render();

)i

[210]

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

}

In the callback, we compare the actual i sRecording value from the state with the earlier
store one in the instance property isRecording. This way, we know when isRecording
has really changed. Only then, we update the menu.

Finally, we can populate the array of menu items options in the get Items method:

getItems = () => {
return [
{
label: "Take screenshot’,
click: () => this.capturer.takeScreenshot (

this.screenshotFilename)

}I

label: "Start recording’,

enabled: !this.isRecording,

click: () => {
this.capturer.record(this.animationFilename);
this.store.dispatch(toggleRecording(true));

}
}I

label: "Stop recording’,
enabled: this.isRecording,
click: () => {
this.capturer.stop();
this.store.dispatch(toggleRecording(false));
t
s

type: "separator"

label: "Open",
click: () => appWindow.show ()

label: "Exit",
click: () => appWindow.close ()

[211]

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

We use the close method of the application window to quit and the method show to
restore the window if it is hidden. We rely on passed in the Capturer instance for
capturing actions. We also update the state by dispatching (store.dispatch) the
toggleRecording action.

Now we instantiate the Tray class in entry script and call it the render method:
./js/app.jsx

import Shortcut from "./Service/Shortcut"

const tray = new Tray(capturer, store);

tray.render () ;

When running the application, we can see in the system notification area the Screen
Capturer menu:

ty wi)) 11:41 (2
Take screenshot

Start recording

Open
Exit

Registering global keyboard shortcuts

Menu in tray is a solution, but actually, we have an option to perform capturing actions
even without opening the menu. NW.js allows us to assign global keyboard shortcuts:

const shortcut = new nw.Shortcut ({
key: "Shift+Alt+4",
active: () => {}

failed: console.error

1)
nw.App.registerGlobalHotKey (shortcut);

appWindow.on("close", () => nw.App.unregisterGlobalHotKey (shortcut)
window.addEventListener ("beforeunload", () =>
nw.App.unregisterGlobalHotKey (shortcut), false);

[212]

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

We use nw. Shortcut to create an object representing a shortcut. With
nw.App.registerGlobalHotKey, the shortcut is registered. We use
nw.App.unregisterGlobalHotKey to unregister the shortcut when the application closes

or reloads.
That brings us to the following service:
./js/Service/Shortcut.js

const appWindow = nw.Window.get ();
import { toggleRecording } from "../Actions";
import { SCREENSHOT_DEFAULT_FILENAME, ANIMATION_DEFAULT_FILENAME,
TAKE_SCREENSHOT_SHORTCUT, RECORD_SHORTCUT, STOP_SHORTCUT } from
"../Constants";
export default class Shortcut {
screenshotFilename = SCREENSHOT_DEFAULT_FILENAME;
animationFilename = ANIMATION_DEFAULT_FILENAME;
isRecording = false;

constructor (capturer, store) {
this.capturer = capturer;
this.store = store;
store.subscribe (() => {
const { isRecording, screenshotFilename, animationFilename } =
store.getState();
this.screenshotFilename = screenshotFilename;
this.animationFilename = animationFilename;
this.isRecording = isRecording;
P
3
registerOne (key, active){
const shortcut = new nw.Shortcut ({
key,
active,
failed: console.error
P i
// Register global desktop shortcut, which can work without focus.
nw.App.registerGlobalHotKey (shortcut);

appWindow.on("close", () => nw.App.unregisterGlobalHotKey (
shortcut));
window.addEventListener ("beforeunload", () =>

nw.App.unregisterGlobalHotKey (shortcut), false);

}
registerAll () {

this.registerOne (TAKE_SCREENSHOT_SHORTCUT, () =>
this.capturer.takeScreenshot (this.screenshotFilename));
this.registerOne (RECORD_SHORTCUT, () => {

[213]

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

if (this.isRecording) {
return;

}

this.capturer.record(this.animationFilename);

this.store.dispatch(toggleRecording(true));
1)
this.registerOne (STOP_SHORTCUT, () => {
if ('this.isRecording) {
return;

t
this.capturer.stop();
this.store.dispatch(toggleRecording(false));

P
}
}

Pretty much like in the Tray class, we inject capturer and store instances. With the first one,
we access capturing actions, and use the second to access the global state. We subscribe for
state changes to get actual values for filename templates and i sRecording. The method
registerOne creates and registers a shortcut instance based on the given key and callback,
and subscribes for the close and beforeunload events to unregister the shortcut. In the
method registerAll, we declare our action shortcuts. The shortcuts key we will define in
the constants module:

./Jjs/Constants/index. Js

export const TAKE_SCREENSHOT_SHORTCUT = "Shift+Alt+4";
export const RECORD_SHORTCUT = "Shift+Alt+5";
export const STOP_SHORTCUT = "Shift+Alt+6";

Now, we can also append the keys to tray menu items:

getItems = () => {
return [
{
label: 'Take screenshot (${TAKE_SCREENSHOT_SHORTCUT}) ",

VA

[214]

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

Now, when we run the application, we get the following tray menu:

11:30 (=
Take screenshot (Shift+Alt+4)
start recordi hift+Alt+5)

Open
Exik

We can hide the application by hitting the Hide window (left hand-side) button of the title
bar and take screenshots by pressing Shift + Alt + 4 and screencasts, with Shift + Alt + 5 and
Shift + Alt + 6 for starting and stopping recording, respectively.

Summary

We started this chapter by introducing the Redux middleware. As an example, we used
redux-diff-logger to monitor mutations in the store. We also plugged in a collection of
tools (redux-devtools), enabling DevTools-like panels on a page for inspecting the store
and traveling back in time using the cancelling actions. Closing with Redux, we examined
unit-testing of action creators and reducers.

In this chapter, we created the Capturer service responsible for taking screenshots and
recording screencasts. We achieved capturing of desktop video input in MediaStream by
using webkitGetUserMedia APIL With the Canvas API, we managed to take a still frame
from the video stream and convert it into an image. For video recording, we went with the
MediaRecorder API Both screenshot and screencast actions we have provided with the
corresponding desktop notifications. We implemented an application menu in the system
tray and bound it to the store. To access capturing actions even without opening the tray
menu, we registered global keyboard shortcuts.

[215]

Creating RSS Aggregator with
Electron, TypeScript , React,
and Redux: Planning, Design,
and Development

Wading through the previous chapters, we created an application with pure JavaScript,
React and React + Redux. We are now coming to the optimal technology stack for large
scalable web applications--TypeScript + React + Redux. We are going to develop the RSS
Aggregator. I find it a good example to show TypeScript in action as well as to examine
asynchronous actions. Besides, you will learn to use a new component library, React MDL.
We will also extend it with custom styles written in SASS language.

Application blueprint

We develop a typical tool that aggregates syndicated content from a manageable list of
sources. If we split the requirements into user stories, we will get something like this:

e As a user, I can see the list of earlier added sources
e Asauser, I can see the aggregated content
e As a user, I can filter the content items by selecting a source in the menu

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

Let's again use WireframeSketcher (http://wireframesketcher.com/) and putiton a
wireframe:

RSS Aggregator X

Titlebar
Feed

Menu

CS5-Tricks
HTML5 Doctor
JavaScript Weekly

Header

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aligua. Ut enim ad minim
veniam, quis nostrud exercitation ullameo laboris nisi ut aliquip exea
commodo consequat.

React

Stories by Dan Abramov

Open
Header

Larem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmad
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullamca laboris nisi ut aliquip ex ea
commodo consaquat.

® o -

e As a user, I can open the item link next to the list

RSS Aggregator X

Titlebar
Feed

Menu

CS5-Tricks

HTMLS Doctor Header
JavaScript Weekly Lo MNew Feed Hipisicing elit, sed do eiusmod
tem na aliqua. Ut enim ad minim
Stories by Dan Abramov zzrr\r URL laboris nisi ut aliquip ex ea
|nttpi 7. | Open
He [OK l [Cancel l

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sad do siusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis nostrud exercitation ullam co laberis nisi ut aliquip exea
commodo consequat.

® o -

[217]

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

e Asauser, I can add a source
e As a user, I can remove a source
¢ As auser, I can update aggregated content

RSS Aggregator X

Titlebar

Menu

CS5-Tricks
HTMLS Doctor
JavaScript Weekly

React

Staries by Dan Abramov

Header

Lorem ipsum dolor sit amet,
consectetur adipisicing elit,
sed do eiusmod tempor
incididunt ut labare et dolore
magna aliqua. Ut enim ad

Open
Header

Lorem ipsum dolor sit amet,
consectetur adipisicing elit, sed
do eiusmod tempor incididunt
ut labore et dolore magna

Header

Lorem ipsum dolor sit
amet, consectetur
adipisicing elit, sed do
eiusmod tempor
incididunt ut labore et
dolore magna aliqua. Ut

" glioua. Ut enim ad minim . 7 .
L W enim ad minim veniam,
Open

Welcome to TypeScript

When working on a large scalable application, it's essential that established architecture has
been followed by all the team members. In other languages, such as Java, C++, C#, and PHP,
we can declare types and interfaces. So, no one can go with a new functionality unless it
fully satisfies the interface intended by the system architect. JavaScript has neither strict
types nor interfaces. That why, in 2012, engineers of Microsoft developed a superset of
JavaScript (ES2015) called TypeScript. This language extends JavaScript with optional static
typing and compiles back to JavaScript, so is acceptable by any browser and operating
system. It is similar to how we compile ES.Next to ECMAScript of the fifth edition with
Babel, but in addition, brings us features that are unlikely to be integrated into ECMAScript
in the foreseeable future. The language is exceptionally great and is documented at
https://www.typescriptlang.org/docs/home.html and provided with an excellent
specification http://bit.ly/29bmdxj. The language is supported by the mainstream IDEs
and code editors, and can be integrated through plugins in automation tools, such as Grunt,
Gulp, Apache Maven, Gradle, and others. Some major frameworks are considering
migrating to TypeScript, while Angular 2+ and Dojo 2 have already embraced it. Other
frameworks expose their interfaces to TypeScript through definition files.

[218]

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

Alternatively for static type checking, one can go with Flow
(https://flow.orqg) by Facebook. Unlike TypeScript, Flow is no compiler,
but a checker. Basic typings in Flow are pretty similar to the ones of
TypeScript, achieved by almost the same syntax. Flow also introduces
advanced types, such as array, union, intersection, and generics, but does
it in its own ways. According to Facebook, they created Flow because
"TypeScript isn't built around bug finding as much as they wanted."

Setting up the development environment for
TypeScript

TypeScript makes alluring promises regarding one's development experience. Why not
fiddle with the code to see it in practice? First, we have to create a dedicated directory for
upcoming samples. We initialize the project by running npm init -y and install
typescript as a dev dependency:

npm i -D typescript
In the manifest scripts section, we add a command to compile sources with TypeScript:
package. json

{

"scripts": {
"build": "tsc"
I

}

We need to let TypeScript know what exactly we want from it. We will describe that in the
configuration file:

tsconfig. json

{

"compilerOptions": {
"target": "ES6",
"module": "CommonJdS",
"moduleResolution": "node",
"sourceMap": true,
"outDir": "./build"

}!

[219]

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

"include": [
"./**/*"
1,
"exclude": [
"node_modules"
]
t

Here, we set the TypeScript compiler to search for t s sources anywhere within the project
directory except node_modules. In compilerOptions, we specify how we want it to treat
our sources during compilation. Field target is set in ES6, meaning TypeScript will
compile into the ES6/ES2016 syntax, which is already fully supported in all the modern
browsers. In the field module, we have CommonJs. Thus, TypeScript will bundle sources
into Common]JS-compliant modules that play nicely with the Node.js environment. With
the field moduleResolution, we choose in favor of the Node.js modules resolution style.
In the field outDir, we determine where TypeScript will store the compiled modules. More
information about compiler options is available at http://bit.1ly/2t9fckv.

Basic types

The development environment now seems ready, so we can try it out with an elementary
example:

example.ts

let title: string = "RSS Aggregator";

We use the type annotation feature of TypeScript to set a constraint on the variable. That's
so easy; we just extend the declaration with the so-called declaration space like : type,
where type can be one of the basic types (boolean, number, string, array, void, any, and a
few others), class, interface, type alias, enum, and import. Here, we applied string,
meaning title accepts only strings.

After compiling with npm run build, we can find file example. js in the . /build
directory with the following content:

build/example.js

let title = "RSS Aggregator";

You see it doesn't do much; it simply removes the type hinting. That's something amazing
about TypeScript - type checking happens at compilation time and disappears by runtime.
So, we benefit from TypeScript without any impact on the application's performance.

[220]

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

Well, let's do a nasty thing and set a value to the variable violating the given constraint:
example.ts

let title: string = "RSS Aggregator";
title = 1;

On compilation, we receive an error message:

error TS2322: Type 'l' is not assignable to type 'string'.

Hmm; TypeScript warns us when we do something wrong. What is even more exciting is if
your IDE supports TypeScript, you get notified on the fly while typing. I suggest to check
against the list http://bit.1ly/2a8rmT1 and pick up the most suitable IDE for you if, by
chance, yours isn't there. I would recommend Alm (http://alm.tools) as a great example
of using TypeScript, React, and Redux together. However, I, myself, pulled in NetBeans (ht
tps://netbeans.org/) a decade ago and it has never disappointed me. It does not have
native TypeScript support, but one can easily get it by installing the TypeScript Editor
plughl(https://github.com/Everlaw/nbts)

Let's play with type annotation more. We take a function and define a contract for entry and
exit points:

example.ts

function sum(a: number, b: number): number {
return a + b;

}
let res = sum(1, 1);
console.log(res);

Actually, we state here that the function accepts two numbers and shall return a number.
Now, if we even think of giving the function any type different from number, the IDE
immediately alerts us about it:

1l
3
4
5

W o - &

[221]

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

Array, plain objects, and indexable types

Well, I believe, with primitive types, it's more or less clear, but what about the others, for
example, arrays? By combining basic type with [], we define an array type:

let arr: stringl[];

Here, we declare the variable arr that is an array of string. We can achieve the same with
the following syntax:

let arr: Array<string>;

Alternatively, we can do it with interface:

interface StringArray A
[index: number]: string;
}

const arr: StringArray = ["one", "two", "tree"];

While declaring the StringArray interface by using the so-called index signature, we set
constraints on the type structure. It accepts numeric indexes and string values. In other
words, it's a string array. We can go further and set a constraint on the array length:

interface StringArray {
[index: number]: string;
length: number;

}

As for plain objects, we can go with an interface describing the intended shape:

interface MyObj {
foo: string;
bar: number;

}
let obj: MyObj;

On the other hand, we can set constraints inline with the object type literal:

let obj: { foo: string, bar: number };
// or
function request (options: { uri: string, method: string }): void {

}

[222]

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

If we are able to declare a value object (http://bit.1ly/2khKSBg), we need to ensure
immutability. Fortunately, TypeScript allows us to specify that members of an object are
readonly:

interface RGB {
readonly red: number;
readonly green: number;
readonly blue: number;

}
let green: RGB = { red: 0, green: 128, blue: 0 };

We can access a percentage, for example, red in a color of the RGB type. But we cannot
change the RGB levels for a declared color. If we try this, we will get an error as follows:

error TS2540: Cannot assign to 'red' because it is a constant or a read-
only property.

For an object of arbitrary properties, we can use an index signature to target string keys:
interface DataMap {

[key: string]: any;
}

const map: DataMap = { foo: "foo", bar: "bar" };

Note that, in DataMap, we set any for member type. By this, we allow any value types.

Function type

We can set constraints on a function by using the function type literal:

const showModal: (toggle: boolean) => void =
function(toggle) {
console.log(toggle);
}

I find it quite discouraging and prefer to use interface:
interface Switcher {

(toggle: boolean): void;

const showModal:Switcher = (toggle) => {
console.log(toggle);

[223]

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

showModal (true);

You may now ask, what if the function has optional parameters? TypeScript makes it very
simple to define an optional parameter. You just need to append the parameter with a
question mark:

function addOgTags (title: string, description?: string): string {

return
<meta property="og:title" content="${title}" />
<meta property="og:description" content="${description || ""}" />

}
We made description optional, so we can call the function both ways:

addOgTags ("Title");
addOgTags ("Title", "Description");

None of these violates the declared interface; so far, we give it string.

In pretty much the same way, we can define optional object members:

interface IMeta {
title: string;
description?: string;

function addOgTags(meta: IMeta): string {
}

Class type

In other languages, we are used to considering interfaces as closely related to classes.
TypeScript brings a similar development experience. What is more, while Java and PHP
interfaces cannot contain instance properties, TypeScript has no such limitations:

interface Starship {
speed: number;
speedUp (increment: number): void;

class LightFreighter implements Starship {
speed: number = 0;
speedUp (increment: number): void {
this.speed = this.speed + increment;

}

[224]

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

let millenniumFalcon = new LightFreighter();
millenniumFalcon.speedUp(100);

With the advance of ES2015/2016, classes are used widely in JavaScript. Yet, TypeScript
allows us to set member accessibility. So, we declare a member as public when we permit
access to it from the code consuming object instance. We use private to ensure the
member will not be accessible outside its containing class. In addition, the protected
members are similar to private, except they can be accessed in any of the derived class
instances:

class LightFreighter implements Starship {
private speed: number = 0;
public speedUp(increment: number): void {
this.speed = this.speed + increment;
}
}

As you can see, the value for speed is hardcoded. It would be just proper if our class could
be configured for the initial speed during initialization. Let's do the refactoring:

class LightFreighter implements Starship {
constructor (private speed: number = 0) {
}
public speedUp(increment: number): void {
this.speed = this.speed + increment;
}
}

Here, we use another nice feature of TypeScript that I am personally excited about. It's
called parameter property. We often declare private properties and populate them from
constructor parameters. In TypeScript, we can simply prepend the parameter with an
accessibility modifier and it will result in a respectively named property taking in the value
of the parameter. So, in the previous code, using private speed in the parameter list, we
declare the speed parameter and assign a passed in value to it. By using the ES6 syntax for
the default parameter, we set speed to zero when nothing has passed in the constructor
constructor(speed = 0).

[225]

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

Abstract classes

Similar to what you might be used to in other languages, in TypeScript, we can use abstract
classes and methods. The abstract class is meant only for extending. One cannot create
instances of the abstract class. Methods defined as abstract are required for implementation
in any subclasses:

abstract class Starship {
constructor (protected speed: number = 0) {

}

abstract speedUp(increment: number): void;

}
class LightFreighter extends Starship {

public speedUp(increment: number): void {
this.speed = this.speed + increment;

}
}

Abstract classes are quite similar to interfaces, except a class can implement multiple
interfaces, but extend only one abstract class.

Enum type

Time after time, we use constants to define a set of logically related entities. With
TypeScript, we can declare an enumerated type populated with immutable data and then
refer to the whole set by the type:

const enum Status {
NEEDS_PATCH,
UP_TO_DATE,
NOT_INSTALLED

}

function setStatus(status: Status) {
//
}

setStatus(Status.NEEDS_PATCH);

[226]

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

Here, we declare a type Status that accepts one of the predefined values (NEEDS_PATCH,
UP_TO_DATE, and NOT_INSTALLED). The function setStatus expects the status
parameter to be of the status type. If you pass in any other value, TypeScript reports an
error:

setStatus ("READY");
// error TS2345: Argument of type '"READY"' is not assignable to parameter
of type 'STATUS'.

Alternatively, we can use a string literal type that refers to any string value of a group:

function setStatus(status: "NEEDS_PATCH" | "UP_TO_DATE" | "NOT_INSTALLED"
) A
//
}
setStatus ("NEEDS_PATCH");

Union and intersection types

Interesting so far, isn't it? What would you say then to it: in TypeScript, we can refer to
multiple types at once. For example, we have two interfaces Anakin and Padmé and need a
new type (Luke) that inherits from both of them. We can achieve it as easily as this:

interface Anakin {
useLightSaber: () => void;
useForce: () => void;

}

interface Padmé {
leaderSkills: stringl[];
useGun: () => void;

}

type Luke = Anakin & Padmé;

Besides, we can do the intersection without explicitly declaring the type:

function joinRebelion(luke: Anakin & Padmé) {

}

[227]

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

We can also define a union type that allows any type of a group. You know the jQuery
library, right? The function jQuery accepts for a selector parameter a number of diverse
types and returns the jQuery instance. How could it possibly be covered with an interface?

interface PlainObj {

[key: string]: string;
}
interface JQuery {

}

function jQuery(selector: string | Node | Node[] | PlainObj | JQuery):
JQuery A

let output: JQuery = {}

//

return output;

}

When a function returns a type depending on a passed-in type, we can declare an interface
that describes all the possible use cases:

interface CreateButton {
(tagName: "button"): HTMLButtonElement;
(tagName: "a"): HTMLAnchorElement;

}

A function implementing this interface accepts a string for the tagName parameter. If the
value is "button", the function returns the Button element. If "a", then it returns the
Anchor element.

One can find available DOM-related interfaces in the specification at
https://www.w3.0rg/TR/DOM-Level-2-HTML/html.html.

Generic type

The types we have just examined refer to a concrete type combination. In addition,
TypeScript supports a so-called generic type that helps reusing the once created interface in
different contexts. For example, if we want an interface for a data map, we can make it like
this:

interface NumberDataMap {
[key: string]: number;

}

[228]

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

But this NumberDataMap accepts only numbers for the member values. Let's say, for string
values, we have to create a new interface, such as St ringDataMap. Alternatively, we can
declare a generic DataMap that sets an arbitrary value type constraint when referred:

interface DataMap<T> {
[key: string]: T;
}

const numberMap: DataMap<number> = { foo: 1, bar: 2 },
stringMap: DataMap<string> = { foo: "foo", bar: "bar" };

Global libraries

Yeah, TypeScript is, indeed, an impressive language when it comes to writing a new code.
But what about existing none-TypeScript libraries? For example, we are going to use React
and Redux modules. They are written in JavaScript, not in TypeScript. Luckily, mainstream
libraries are already provided with TypeScript declaration files. We can install these files
per module using npm:

npm i -D @types/react
npm i -D @types/react-dom

Now, when we try something stupid with any of these modules, we get immediately
notified about the problem:

import * as React from "react";
import * as ReactDOM from "react-dom";

ReactDOM. render (
<div></div>,
"root"

)i
On compiling or even while typing, you will get the error:

error TS2345: Argument of type '"root"' is not assignable to parameter of
type 'Element'.

Fair enough; instead of the HTML element (for example, document . getElementById (
"root"))Ipassed to ReactDOM. render a string as the second parameter.

[229]

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

Yet, to be honest, not every library is provided with TypeScript declarations. For example,
in the RSS Aggregator application, I am going to use the feedme library
(https://www.npmis.com/package/feedme) to fetch and parse RSS by a URL. As it happens,
the library has no declaration file. Fortunately, we can quickly create one:

feedme.d.ts

declare class FeedMe {

new (flag?: boolean): NodedJdS.WritableStream;
on(event: "title", onTitle: (title: string) => void): void;
on(event: "item", onItem: (item: any) => void): void;

}

The module feedme exposes a class FeedMe, but TypeScript doesn't know about these
modules; it is not yet declared in the TypeScript scope. So, we use ambient declaration in
feedme.d.ts (declare class FeedMe) tointroduce a new value in the scope. We state
the class constructor that accepts an optional flag of the type boolean and returns the
Node.js WwriteStream object. We use overloading to describe two cases of function usage.
In the first, it receives a string "title" for event and expects a callback for handling the
RSS title. In the second, it takes in the event "title™ and then expects a callback to handle
the RSS entry.

Now, we can consume the newly created declaration file from the service:

/// <reference path="./feedme" />
import http = require("http");

var FeedMe = require("feedme");

http.get ('http://feeds.feedburner.com/TechCrunch/startups', (res) => {
const parser = new FeedMe (true);
parser.on("title", (title: string) => {

console.log(title);

P
res.pipe(parser);

)i

Using a triple-slash directive, we include feedme.d.ts in the project. After it's done,
TypeScript validates if FeedMe is used according to its interface.

Creating static prototype

I assume, at this point, we are quite enough into TypeScript to start with the application. As
with to the previous examples, first what we do is the static prototype.

[230]

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

Setting up the development environment for the
application

We have to set up our development environment for the project. So, we dedicate a directory
and put the following manifest there:

./package. json

{

"name": "rss-aggregator",
"title": "RSS Aggregator",
"version": "1.0.0",
"main": "./app/main.js",
"scripts": {
"build": "webpack",
"start": "electron .",
"dev": "webpack -d --watch"

}

As requested by any Electron application, we set the path to our main process script in the
main field. We also define scripts commands to run Webpack for building and for
watching. We set one scripts command for running the application with Electron. Now, we
can install the dependencies. We definitely need TypeScript, as we are going to build the
application using it:

npm i -D typescript

For bundling, we will use Webpack as we did for Chat and for Screen Capturer
applications, but this time, instead of babel-1loader, we go with ts-1oader, because our
sources are in the TypeScript syntax:

npm i -D webpack
npm i -D ts-loader

We also install Electron and the accompanying modules that we already examined while
creating the Chat application:

npm i -D electron
npm i -D electron-debug
npm i -D electron-devtools—installer

Finally, we install the React declaration files:

npm i -D @types/react
npm i -D @types/react-dom

[231]

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

In order to access interfaces of Node.js, we also install the corresponding declarations:
npm i -D @types/node

Now, we can configure Webpack:

. /webpack.config.js

const path = require("path");

module.exports = {

entry: "./app/ts/index.tsx",

output: {
path: path.resolve(_ _dirname, "./app/build/js/"),
filename: "bundle.js"

b

target: "electron-renderer",

devtool: "source-map", // enum

module: {
rules: [

{
test: /\.tsx?$/,
use: "ts-loader"

}
bi

Here we set the entry script as app/ts/index.tsx and ./app/build/js/bundle.js as
the output. We target Webpack on Electron (electron-renderer) and enable source map
generation. Finally, we specify a rule, that makes Webpack process any . ts/.tsx files with
the ts-1loader plugin.

So, if we request a file, such as require (". /path/file.ts") or import {member}
from "./path/file.ts", Webpack will compile it with TypeScript during the bundling.
We can make it more convenient using the Webpack option resolve:

./webpack.config.js
{

resolve: {
modules: [
"node_modules",
path.resolve (__dirname, "app/ts")

i

[232]

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

extensions: [".ts", ".tsx", ".js"]

}I
}

Here, we state that any encountered module name Webpack tries to resolve against both
node_modules and app/ts directories. So, if we access a module like that, we will have the
following;:

import {member} from "file.ts"

According to our configuration, Webpack first checks the existence of
node_modules/file.ts and then app/ts/file.ts. Since we enlisted the .t s extension
as resolvable, we can omit it from the module name:

import {member} from "file"
What's left is just configuration for TypeScript:
tsconfig. json

{

"compilerOptions": {
"target": "es6",
"module": "commonijs",
"moduleResolution": "node",
"sourceMap": false,
"outDir": "../dist/",
"jSX": "react"

by

"files": [
"./app/ts/index.tsx"

}

It's pretty much the same as we created for the TypeScript introduction examples, except
that, here, we do not point the compiler to a directory, but explicitly to the entry script. We
also inform the compiler that it shall expect JSX.

[233]

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

React-MDL

Previously, while working on Screen Capturer, we examined the component library
Material UL That's not the only implementation of material design available for React. This
time, let's try another one--React MDL (https://react-mdl.github.io/react-mdl/). So,
we install the library and the accompanying declarations:

npm i -S react-mdl
npm i -D @types/react-mdl

According to the documentation, we enable the library via imports:

import "react-mdl/extra/material.css";
import "react-mdl/extra/material.js";

Oh! Oh! Webpack won't be able to resolve the CSS module until we configure it
accordingly. First, we have to tell Webpack to look for react-mdl/extra/material.css
and react-mdl/extra/material.js in the node_modules directory:

. /webpack.config.js
{

resolve: {

modules: [
"node_modules",
path.resolve (__dirname, "app/ts")
] 14
extensions: [".ts", ".tsx", ".js", ".css"]

H
Second, we add a rule to handle CSS with the css-1oader plugin:
./webpack.config.js
{
module: {
rules: [
test: /\.css$/,
use: [

"style—-loader",
"css—loader"

[234]

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

]
}I

}

Well, now, when meeting import "react-mdl/extra/material.css", Webpack loads
the styles and embeds them into the page. But within the CSS content, there are links to a
custom .woff fonts. We need to make Webpack load the referred font files:

./webpack.config.js
{
module: |
rules: [

{
test: /\.woff(2)2(\?2v=[0-9]\.[0-9]\.[0-9])2S/,
use: {
loader: "url-loader",
options: {
limit: 1000000,
mimetype: "application/font-woff"

}

by

}
Now, we have to install both the mentioned loaders:

npm i -D css-loader
npm i -D style-loader

Creating the index.html

The first thing we usually take care of in the Electron application is the main process script
that basically creates the application window. For this application, we do not introduce any
new concepts about it, so we can reuse main. js of the Chat application.

[235]

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

The index.html will be very simple:

app/index.html
<!DOCTYPE html>
<html lang="en">
<head>
<link rel="stylesheet" href="https://fonts.googleapis.com/icon?
family=Material+Icons">
<title>RSS Aggregator</title>
</head>
<body>
<div id="root"></div>
<script src="./build/js/bundle.js"></script>
</body>
</html>

Basically, we load Google's Material Icons font and declare out the bounding element
(div#root). Of course, we have to load the generated by the Webpack/TypeScipt
JavaScript. It is located at build/js/bundle. js,, exactly as we configured it in
./webpack.config. js.

Next, we compose the entry script:
./app/ts/index.tsx

import "react-mdl/extra/material.css";
import "react-mdl/extra/material.js";

import * as React from "react";
import * as ReactDOM from "react-dom";
import App from "./Containers/App";

ReactDOM. render (

<App />,

document .getElementById("root")
)i

As you see, it's similar to what we had in the Screen Capturer static prototype, except for
importing React-MDL assets. As for TypeScript, it doesn't really require any changes in the
code. Yet, now we definitely have typed interfaces for the module we use
(./node_modules/@types/react-dom/index.d.ts), meaning if we violate a constraint,
for example, of ReactDOM. render, we get an error.

[236]

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

Creating the container component

Let's now create the container component that we referred to in the entry script:
./app/ts/Containers/App.tsx

import { Layout, Content } from "react-mdl";
import * as React from "react";

import TitleBar from "../Components/TitleBar";
import Menu from "../Components/Menu";
import Feed from "../Components/Feed";

export default class App extends React.Component<{}, {}> {

render () A
return (
<div className="main-wrapper">
<Layout fixedHeader fixedDrawer>
<TitleBar />
<Menu />
<Content>
<Feed />
</Content>
</Layout>
</div>
)

}

Here, we import the components Layout and Content from the React-MDL library. We
use them to layout our custom components TitleBar, Menu, and Feed. According to the
React declaration file (./node_modules/Qtypes/react/index.d.ts),

React .Component is a generic type, so we have to provide it with interfaces for the state
and props React .Component<IState, IProps>. In the static prototype, we have neither
states nor props, so we can go with empty types.

Creating the TitleBar component

The next component will represent the title bar:
./app/ts/Components/TitleBar.tsx

import * as React from "react";
import { remote } from "electron";

[237]

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

import { Header, Navigation, Icon } from "react-mdl";
export default class TitleBar extends React.Component<{}, {}> {

private onClose = () => {
remote.getCurrentWindow () .close () ;
t
render () A
return (
<Header scroll>
<Navigation>
<Icon name="close" />

</Navigation>
</Header>

)
}

Here, we set up the look and feel using the Header, Navigation, and Icon components of
React MDL and subscribe for the click event on the close icon. Furthermore, we import the
remote object of the elect ron module and, by using the getCurrentWindow method, we
access the current window object. It has the method close that we apply to close the
window.

Our Menu component will contain the list of aggregated feeds. With the buttons add and
remove, users will be able to manage the list. The button aut orenew serves to update all
the feeds.

Creating the Menu component

We are going to keep the feed menu in the Drawer component of React MDL that shows up
automatically on wide screens and hides in the burger menu on smaller ones:

./ts/Components/Menu.tsx

import * as React from "react";
import { Drawer, Navigation, Icon, FABButton } from "react-mdl";

export default class Menu extends React.Component<{}, {}> {
render ()1

return (
<Drawer className="mdl-color--blue-grey-900 mdl-

[238]

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

color-text--blue-grey-50">
<Navigation className="mdl-color--blue-grey-80">
<a>
<Icon name="& #xEOE5;" />
Link title

</Navigation>
<div className="mdl-layout-spacer"></div>
<div className="tools">
<FABButton mini>
<Icon name="add" />
</FABButton>

<FABButton mini>
<Icon name="delete" />
</FABButton>

<FABButton mini>
<Icon name="autorenew" />
</FABButton>
</div>
</Drawer>

)

Creating the feed component

Finally, we take care of the main section where we are going display active feed content:
./app/ts/Components/Feed.tsx

import * as React from "react";
import { Card, CardTitle, CardActions, Button, CardText } from "react-mdl";

export default class Feed extends React.Component<{}, {}> {
render () {
return (
<div className="page-content feed-index">
<div className="feed-list">

<Card shadow={0} style={{width: "100%", height: "auto",
margin: "auto"}}>
<CardTitle expand style={{color: "#fff", backgroundColor:
"#46B6AC"}}>
Title
</CardTitle>

[239]

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

<CardText>
Lorem ipsum dolor sit amet, consectetur adipiscing
elit. Cras lobortis, mauris quis mollis porta

</CardText>

<CardActions border>
<Button colored>Open</Button>

</CardActions>

</Card>

</div>
<div className="feed-contents"></div>
</div>
)i
}

In the . feed-1ist container, we display the list of RSS items, each wrapped with the Card
component of React MDL. The container . feed-contents is a placeholder for the item
content.

Everything is ready. We can build and start:

npm run build
npm start

The output is:

RSS Aggregator

Title

[240]

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

Adding custom styles with SASS

Seemingly, the resulting Ul needs additional styling. I suggest that we code our custom
styles in SASS:

./app/sass/app.scss

.main-wrapper {
height: 100vh;
}

First of all, we make the top level element (. /app/ts/Containers/App.tsx) always
adapt to the actually window height.

Further, we declare a variable for the fixed height of the title bar and set the layout for feed
items and item content containers:

./app/sass/app.scss

SheadrHeight: 66px;

.feed-index {
display: flex;
flex—flow: row nowrap;
overflow-y: auto;
height: calc(100vh - #{SheadrHeight});
&.is-open {
overflow-y: hidden;
.feed-1ist {
width: 50%;
}
.feed-contents {
width: 50%;
}
}
}
.feed-1ist {
flex: 1 0 auto;
width: 100%;
transition: width 200ms ease;
}
.feed-contents {
flex: 1 0 auto;
width: 0;
transition: width 200ms ease;

[241]

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

Initially, the width of the feed items container (. feed-1ist) is 100%, while item content
one (. feed-contents)is hidden (width:0). When the parent container (. feed-index)
receives the new state with the i s—open class, both the child containers shift to 50% width
gracefully.

Finally, we layout the action buttons in the Menu component:
./app/sass/app.scss
.tools {
height: 60px;
display: flex;
flex—-flow: row nowrap;

justify-content: space-between;

}

Well, we have introduced a new source type (SASS), so we have to adjust the Webpack
configuration:

. /webpack.config.js
{

resolve: {

modules: [
"node_modules",
path.resolve (__dirname, "app/ts"),
path.resolve (__dirname, "app/sass")
] r
extensions: [".ts", ".tsx", ".js", ".scss", ".css"]

}I
}

Now, Webpack accepts . scss module names and look for the source in app/sass. We also
have to configure Webpack to compile SASS in CSS:

./webpack.config.]js
{
module: {

rules: [

test: /\.scss$/,
use: [

[242]

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

"style-loader",
"css—-loader",
"sass—loader"

}I

}

Here, we determine that, when resolving the . scss file, Webpack uses the sass-loader
plugin to convert SASS to CSS and then css-1loader and style-loader to load the
generated CSS. So, we now have a missing dependency - sass-1loader; let's install it:

npm i -D sass-loader
This module relies on the node-sass compiler, so we need it also:
npm i -D node-sass

Why not to check what we get. So we build and start:

npm run build
npm start

The application looks better now:

RSS Aggregator

Title

[243]

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

Summary

In this chapter, we dived into TypeScript. We examined basic types in variable declarations
and in parameter constraints. We fiddled with interfaces for arrays and plain objects. You
learned to interface functions and classes. We took note of abstraction features, such as
member accessibility modifiers, parameter property, abstract classes, and methods. You
learned to handle group entities with the enum type and string literals. We examined the
reuse of interfaces with generic type. We have also seen how to install TypeScript
declarations for global libraries and how to write our own when none is available. We
started to work on the application. So, we set up Webpack to find and process the .ts/.tsx
modules as well as to load CSS and web fonts. We used components of the React MDL
library to create the UI. We extended the Webpack configuration with the SASS loader to
process our custom styles. We ended up with a working static prototype.

[244]

Creating RSS Aggregator with
Electron, TypeScript, React,
and Redux: Development

In the previous chapter, we embraced TypeScript and came up with a static prototype.
Now, we are about unleash the try power of the language. We are going to write
application services and cover them with interfaces. We will describe actions and Reducers.
On the way, we will examine the creation of Promise-based asynchronous actions and
optimistic updates with the redux-promise and redux-actions modules. We will
connect the store to the application and bring the intended functionality to the components.
We will also create a simple router and bind it to the store.

Creating a service to fetch RSS

In a nutshell, our application is about reading RSS feeds. So, it would be the right thing to
start with the service, which fetches the feed by a given URL and parses it into a structure
that we could attach to the applications state. I suggest retrieving the feed XML with the
request (https://www.npmjs.com/package/request) module and parsing it using the
feedme module (https://www.npmjs.com/package/feedme). Let's do it first in plain
JavaScript. So, we need to install both the packages:

npm i -S feedme
npm i -S request

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

We are going to have a function rss that uses request to fetch feed contents though

HTTP(s). This function will accept two arguments: feed URL and a callback function written
in a thunk-like manner of Node.js:

const request = require("request");

function rss(feedUrl, onDone) {
const feed = {
title: "",
items: []
}I

parser = createFeedParserStream(feed);

request

.get (feedUrl)

.on("error", (err) => {
onDone (err);

)

.on("end", () => {
onDone (null, feed);

)

.pipe (parser);

}

Here, we define the feed data container as a plain object (feed). We obtain a Writable
Sﬁeann(https://nodejs.org/api/stream.html)frOHlthE]10tyetvvrﬂien
createFeedParserStream function and pipe it into the Readable Stream produced by
request for the specified feed URL. Now, let's add the missing function:

const FeedMe = require("feedme");

function createFeedParserStream(feed) {
const parser = new FeedMe(true);
parser.on("title", (title) => {

feed.title = title;

}) i

parser.on("item", (item) => {
feed.items.push(item);

}) i

return parser;

}

Here, we get the stream as the FeedMe instance and subscribe for its parsing events. On
receiving the feed title, we assign it to feed.title. On receiving every item's details, we
push them into the feed. items array. This function returns the derived parse stream and
modifies the feed object by the reference passed in with the arguments.

[246]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

Now, we can consume the rss function as follows:

rss("http://feeds.feedburner.com/CssTricks", (err, feed) => {
if (err) {
return console.log(err);
}
console.log(feed);

)i

Despite the fact that, by default, the Node.js core modules still imply long nesting of

asynchronous functions, we are quite aware of the undesirable impact known as Callback
Hell. So, we will convert the service into a Promise:

function rss(feedUrl){

return new Promise((resolve, reject) => {
const feed = {
title: "",

items: []
by
parser = createFeedParserStream(feed);

request
.get (feedUrl)
.on("error", (err) => reject(err))
.on("end", () => resolve(feed))

.pipe (parser);
)i
}

Now, it leads to a notably improved development experience:

rss("http://feeds.feedburner.com/CssTricks")
.then((feed) => console.log(feed))
.catch(err => console.log(err));

Being a Promise, it's also available via the async/await syntax:

async function handler () {
try |

const feed = await rss("http://feeds.feedburner.com/CssTricks");
} catch(e) {

// handle exception

handler();

[247]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

At this point, we can jump back to TypeScript and describe the types that we have in the
code. Firstly, we expect the declared feed structure to implement the following interface:

./app/ts/Interfaces/Rss.ts

export interface IRssItem {
description: string;
link: string;
pubdate: string;
title: string;

export interface IFeed {
title: string;
items: IRssItem[];

}

But wait! The module feedme doesn't have a declaration file. It looks like we have to
provide it with an interface too. In the previous chapter, I showed a way to introduce a
global library into the TypeScript scope by using triple-slash directives and ambient
declarations. That's not the only possible solution. We can declare the interface in a module:

./app/ts/Services/IFeedMe.ts

import { IRssItem } from "../Interfaces/Rss";

export interface IFeedMe {
new (flag?: boolean): NodedS.WritableStream;
on(event: "title", onTitle: (title: string) => void): void;
on(event: "item", onItem: (item: IRssItem) => void): void;

}

In the service, we import the IFeedMe interface and assign the feedme export to a constant
of type IFeedMe:

import { IFeedMe } from "./IFeedMe";
const FeedMe: IFeedMe = require("feedme");

After rewriting our service in TypeScript, its source will look as follows:
/app/ts/Services/rss.ts
import { IRssItem, IFeed } from "../Interfaces/Rss";

import { IFeedMe } from "./IFeedMe";
import * as request from "request";

const FeedMe: IFeedMe = require("feedme");
function createFeedParserStream(feed: IFeed): NodeJS.WritableStream {
const parser = new FeedMe(true);

[248]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

parser.on("title", (title: string) => {
feed.title = title;

)i

parser.on("item", (item: IRssItem) => {
feed.items.push(item);

)i

return parser;

export default function rss(feedUrl: string): Promise<IFeed> {

const feed: IFeed = {

title: "",

items: []

bi
return new Promise<IFeed>((resolve, reject) => {
request.get (feedUrl)
.on("error", (err: Error) => {

reject (err);
)
.on("end", () => {
resolve (feed);
)
.pipe(createFeedParserStream(feed));

1)

What is changed? We regarded the export feedme module with an interface (FeedMe :
IFeedMe). We defined the contract for the createFeedParserStream function. It accepts
the IFeed type as input and returns NodeJS.WritableStream We did the same for the
service function rss. It expects a string and returns a Promise, which resolves in the IFeed

type.

Creating a service to manage feed menu

Well, now we can fetch RSS feeds. But the plan was to have a manageable menu of feeds. I
think, we can represent the menu in an array of items, where each item can be described
with the following interface:

./app/ts/Interfaces/index.ts

export interface IMenultem {
url: string;

[249]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

title: string;
id: string;
}
As for the service itself, let's also start with the interface:
./app/ts/Services/IMenu.ts

import { IMenultem } from "../Interfaces";

export interface IMenu {
items: IMenultem[];

clear(): void;

remove (url: string): IMenultem[];

add(url: string, title: string): IMenultem[];
load(): IMenultem[];

}

To some degree, it's like Test-Driven development. We describe the contents of the class
without implementation to get the whole picture. Then, we populate the members one by
one:

./app/ts/Services/Menu.ts

import shal = require("shal");
import { IMenu } from "./IMenu";
import { IMenultem } from "../Interfaces";

class Menu implements IMenu {
items: IMenultem[] = [];

constructor (private ns: string){

}
clear(): void {
this.items = [1;
this.save();
}
remove (url: string): IMenultem[] {
this.items = this.items.filter((item) => item.url !== url);

this.save();
return this.items;

add(url: string, title: string): IMenultem[] {

[250]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

const id = <string> shal(url);
this.items.push({ id, url, title });
this.save();

return this.items;

}

private save(): void {
localStorage.setItem(this.ns, JSON.stringify(this.items));
t

load(): IMenultem[] {
this.items = JSON.parse(localStorage.getItem(this.ns) || "[]1");
return this.items;
t
t

export default Menu;

What is going on here? Firstly, we import the shal module
(https://www.npmjs.com/package/shal) that we are going to use to calculate SHA1 hash
(https://en.wikipedia.org/wiki/sHa-1) of a feed URL. That's an external module, which
resolves to a non-module entity and, therefore, cannot be imported using the ES6 syntax.
That's why, we go with the require function. But we still want TypeScript to consider the
module declaration file (Rt ypes/shal), so we declare its container as import shal. We
also import, in the module scope, the service interface (IMenu) and menu item type
(IMenuItem). Our constructor accepts namespace as a string. By prefixing the parameter
with an accessibility modifier, we declare the ns property and assign the parameter's value
to it. The instance of Menu will keep the actual menu state in the property items. Private
method save stores the value of the items property to localStorage. All the three add,
remove, and clear methods modify the this.items array and synchronize with
localStorage by using the save method. Finally, the method load updates this.item
with the array stored in localStorage.

[251]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

Actions and Reducers

So, we have our core services and can start designing the Redux store. We can describe the
intended state mutations in a table:

Action creator Action Type State Impact

toggleOpenAddFeed | TOGGLE_ADD_FEED |state.isOpenAddFeed

addFeed ADD_FEED state.isOpenAddFeed
state.feedError
state.items

setFeedError SET_FEED_ERROR |state.feedError
removeFeed REMOVE_FEED state.feedError
fetchFeed FETCH_FEED state.items

state.feedError

fetchMenu FETCH_MENU state.menu
state.items
state.activeFeedUrl

setActiveFeed SET_ACTIVE_FEED|state.activeFeedUrl

First of all, we need to populate our feed menu. For that, we are going to have a modal
window with a form to add a feed. The action creator function toggleOpenaAddFeed will be
used to toggle the visibility of the modal window.

When the form in the modal window is submitted, the component will call the addreed
function. The function fetches the feed by the supplied URL, obtains its title, and appends
the menu with a new item. As it involves user input and network operations, we have to
cover the failure scenario. So, we introduce the setFeedError function that sets a message
in the application state. When we update the menu, the corresponding service synchronizes
the change with 1ocalStorage. That means we need an action to read the menu. The
function fetchMenu will take care of it. Besides, it will utilize the rss service to fetch the
items of all the feeds in the menu in an aggregative list. What's more, we are going to
provide the option to navigate through the menu. When a user clicks on an item, the
component calls setActiveFeed to mark the item as active and the function fetchFeed to
update the Feed component with the items of the selected feed.

[252]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

When working on action creator functions, we declare the types and use them as references
from the Reducers. That means we need a module with a bunch of constants representing
action types:

./app/ts/Constants/index.ts

export const TOGGLE_ADD_FEED = "TOGGLE_ADD_FEED";
export const SET_ACTIVE_FEED = "SET_ACTIVE_FEED";
export const FETCH_MENU = "FETCH_MENU";

export const ADD_FEED = "ADD_FEED";

export const SET_ADD_FEED_ERROR = "SET_ADD_FEED_ERROR";
export const SET_FEED_ERROR = "SET_FEED_ERROR";

export const FETCH_FEED = "FETCH_FEED";

export const REMOVE_FEED = "REMOVE_FEED";

Since we are here, let's also define a few configuration constants:

export const MENU_STORAGE_NS = "rssItems";
export const FEED_ITEM_PER_PAGE = 10;

The first (MENU_STORAGE_NS) specifies the namespace that we are going to use in
localStorage for the menu. The second (FEED_ITEM_PER_PAGE) determines how many
items we display per page. That applies for both a selected feed and aggregative one.

In chapter 5, Creating a Screen Capturer with NW.js, React, and Redux: Planning, Design, and
Development, we used the third-party module redux-act to abstract the creation of actions
and Reducers. It was really handy, but it doesn't fit if you need asynchronous actions. So,
this time, we are going to use the redux-actions module
(https://github.com/acdlite/redux-actions) instead. Let's check what that is on a
JavaScript example. First, we create a synchronous action by calling the createAction
function of redux-actions:

import { createAction } from "redux-actions";
const toggleOpenAddFeed = createAction("TOGGLE_ADD_FEED", (toggle) =>
toggle);

So far, it looks pretty much similar to the syntax of redux-act. We can run the newly
created function:

console.log(toggleOpenAddFeed(true)),

We then get an action object with a mandatory type property and a multipurpose payload
one:

{ payload: "TOGGLE_ADD_FEED", type: true }

[253]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

Now, we can make a Reducer by using the handleActions function of redux-actions:

import { handleActions } from "redux-actions";
const app = handleActions ({

"TOGGLE_ADD_FEED": (state, action) => ({
..state, isOpenAddFeed: action.payload
})

}, defaultState);

The function handleActions expects a plain object that maps handlers to actions using the
action type as a reference. Every handler callback takes in the latest state object and the
dispatched action--the same as the canonical Reducer
(http://redux.js.org/docs/basics/Reducers.html)

But what about asynchronous actions? For example, we are going use the rss services for
fetching feeds. The service returns a Promise. Thanks to redux-actions, we can create an
action as simple as the following:

const fetchFeed = createAction("FETCH_FEED", async (url: string) =>
await rss(url));

Isn't it beautiful? We just pass, for the handler, an asynchronous function. The action will be
dispatched as soon as the Promise of the handler resolves:

const app = handleActions ({
"FETCH_FEED": (state, action) => (
...state,
items: action.payload.items

})
}, defaultState);

Hold on! But what if the Promise gets rejected? The module redux-actions relies on
optimistic updates. In the case of failure, incoming action acquires an extra property error
when we can find an error message:

const app = handleActions ({

"FETCH_FEED": (state, action) => ({
if (action.error) {
return { ...state, feedError: “Cannot fetch feed: ${action.payload}"
bi
}
return
...state,

[254]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

items: action.payload.items
i
H)

}, defaultState);

Now after considering how we are going to implement action creators and Reducers, we
can cover the store assets with interfaces. First, we declare the interface for the state:

./app/ts/Interfaces/index.ts

VA

export interface IAppState {
isOpenAddFeed: boolean;
menu: IMenultem[];
items: IRssItem[];
feedError: string;
activeFeedUrl: string;

}

The property isOpenAddFeed is a boolean determining if the modal window with the
form for adding a new feed is visible. The property menu contains the list of menu items
and is used in the Menu component to build the menu. The property items consists of RSS
items and is used to build the list in the Feed component. The property feedError stores
the last error message and activeFeedUrl keeps the last requested feed URL.

Next, we describe the actions:

import { Action } from "redux-actions";

export interface IAppActions {

toggleOpenAddFeed: (toggle: boolean) => Action<boolean>;
setActiveFeed: (url: string) => Action<string>;
setFeedError: (msg: string) => Action<string>;
fetchMenu: () => Promise<IMenuRssPayload>;

addFeed: (url: string) => Promise<IMenultem[]>;
removeFeed: (url: string) => Promise<IMenultem[]>;
fetchFeed: (url: string) => Promise<IFeed>;

}

The module redux-actions exports though the declaration file Act ion type. So, we state
that the functions toggleOpenAddFeed, setActiveFeed, and setFeedError return plain
objects that confront the Act ion type constraints. In other words, in addition to the type
property, those may have payload and error. Action is a generic type, so we clarify what
type is expected in payload, for example, Action<boolean> means { type: string,
payload: boolean }.

[255]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

Asynchronous actions fetchMenu, addFeed, removeFeed, and fetchFeed return
Promises. Again, we specify explicitly what type is expected when a Promise resolves.
Speaking of which, the function fetchMenu refers to the missing IMenuRssPayload type.
Let's add it:

./app/ts/Interfaces/index.ts

export interface IMenuRssPayload {
menultems: IMenultem[];
rssItems: IRssItem[];

}

The function resolves with an object containing both menu items and RSS items of the
aggregative list.

It seems like we are ready to implement the store. So, we will start with actions:
./app/ts/Actions/actions.ts

import { createAction } from "redux-actions";

import * as vo from "../Constants";

import { IMenultem, IRssItem, IFeed, IMenuRssPayload } from
", ./Interfaces";

import Menu from "../Services/Menu";

import rss from "../Services/rss";

const menu = new Menu(vo.MENU_STORAGE_NS);

First, we import createAction, the earlier defined constants and interfaces, and both the
services such as rss and Menu constructor. We create an instance of the menu in the
namespace imported from the configuration constants. Next, we add synchronous actions:

const feedActions = {

toggleOpenAddFeed: createAction<boolean, boolean> (
vo.TOGGLE_ADD_FEED, (toggle: boolean) => toggle
)

setActiveFeed: createAction<string, string>(
vo.SET_ACTIVE_FEED, (url: string) => url

),

setFeedError: createAction<string, string>(
vo.SET_FEED_ERROR, (msg: string) => msg
)

removeFeed: createAction<IMenultem[], string>(

[256]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

vo.REMOVE_FEED, (url: string) => menu.remove(url)

)I
Yi

Here, we use the pattern we examined earlier in the JavaScript example for createAction.
The only difference is that createAction is a generic type in the TypeScript scope, so we
have to specify what type the action creator will pass in the payload property and what it
expects with the first parameter. All of these functions take in a single argument. If we
needed more, we would express it as createAction<Payload, Argl, Arg2> Oreven
createAction<Payload, Argl, Arg2, Arg3, Argéd>.

Now, we extend feedActions with asynchronous actions:

const feedActions = {

VA

fetchFeed: createAction<Promise<IFeed>, string>(
vo.FETCH_FEED, async (url: string) => await rss(url)
) r

addFeed: createAction<Promise<IMenulItem[]>, string>(
vo.ADD_FEED,

async (url: string) => {
if (menu.items.find(item => item.url === url)) {
throw new Error("This feed is already in the list");

t
const feed = await rss(url);
if (!feed.title) {
throw new Error("Unsupported format");
t
return menu.add(url, feed.title);
t
),

fetchMenu: createAction<Promise<IMenuRssPayload>> (

vo.FETCH_MENU, async () => {
menu.load () ;
let promises = menu.items.map(item => rss(item.url));
return Promise.all(promises)
.then((feeds: IFeed[]) => {
if (!'feeds.length) {
return { menultems: [], rssItems: [] };

t

let all = feeds
.map(feed => feed.items)
// combine [[items], [item]] in a flat array
.reduce ((acc: IRssItem[], items: IRssItem[]) =>

[257]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

acc.concat (items))
// sort the list by publication date DESC
.sort((a, b) => {

let aDate = new Date(a.pubdate),

bDate = new Date(b.pubdate);

return bDate.getTime () - aDate.getTime();
)
.slice(0, vo.FEED_ITEM_PER_PAGE);

return { menultems: menu.items, rsslItems: all };

1)

)
bi

export default feedActions;

The function fetchFeed simply delegates the Promise of the rss service. The function
addFeed first checks whether a given URL already exists in the menu. If t rue, it throws an
exception. Then, the function obtains the feed from the rss service and adds the item into
the menu. Finally, fetchMenu performs a number of tasks. It reloads the menu from
localStorage. That is exactly what one may expect of the action. But I want the function
to generate the aggregative list as well. So, it collects the Promises of the rss service for
every feed available in the menu. It applies Promise.all to resolve the collected set of
Promises. The method results in the list of feeds. We need to combine all the items in a flat
array, sort it by publication date, and limit it to the number we set in the

FEED_ITEM_ PER_PAGE constant.

Now, we start on the Reducer:
./app/ts/Reducers/app.ts

import { handleActions, Action } from "redux-actions";
import { IAppState, IMenuRssPayload } from "../Interfaces";
import * as vo from "../Constants";

const defaultState: IAppState = {
isOpenAddFeed: false,
menu: [],
items: [1],
feedError: "",
activeFeedUrl: ""
bi

Here, we imported the handleActions function and the Action interface, and from
redux-actions, our interfaces and constants. We also defined the default state for the
Reducer.

[258]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

Next, we create the Reducer:

const app = handleActions<IAppState> ({

[vo.TOGGLE_ADD_FEED]: (state, action) => ({
...state, isOpenAddFeed: action.payload
F)

[vo.ADD_FEED]: (state, action) => {
if (action.error) {
return { ...state, feedError: "Cannot add feed:
${action.payload}" };
}
return { ...state, feedError: "", isOpenAddFeed: false, menu:

action.payload };

}I

[vVo.SET_FEED_ERROR]: (state, action) => ({
...state, feedError: action.payload

1)y

[VO.REMOVE_FEED]: (state, action) => {
if (action.error) {
return { ...state, feedError: "Cannot remove feed:
${action.payload}" };
}
return { ...state, menu: action.payload };
b
[VO.FETCH_MENU]: (state, action: Action<IMenuRssPayload>) => {
if (action.error) {
return { ...state, feedError: ‘Cannot fetch menu:
${action.payload}" };
}
return {
...State,
menu: action.payload.menultems,
items: action.payload.rsslItems,
activeFeedUrl: ""
Fi
b
[Vo.FETCH_FEED]: (state, action) => {
if (action.error) {
return { ...state, feedError: ‘Cannot fetch feed:
${action.payload}" };
}

[259]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

return {
...state,
items: action.payload.items
i
o

[vVo.SET_ACTIVE_FEED]: (state, action) => ({
...state, activeFeedUrl: action.payload

H

}, defaultState);
export default app;

handleActions is generic type, so we can specify the constraints for the state object it
operates with. In the supplied object, we describe how every dispatched action shall modify
the state. Thus, toggleOpenAddFeed (TOGGLE_ADD_FEED) toggles the i sOpenAddFeed
property. The function addFeed (ADD_FEED), in case of success, populates the menu
property from the action payload and, besides, resets feedError and isOpenAddFeed. If
the Promise was rejected, it sets feedError with an error message. The function
setFeedError (SET_FEED_ERROR) simply sets feedError from the action payload. The
function removeFeed (REMOVE_FEED) updates the menu, so here, it populates the menu
state property with the updated list. The function fetchFeed (FETCH_FEED) updates the
items property with just the fetched feed items. The function fet chMenu (FETCH_MENU)
reloads the menu and generates the aggregative list, so it updates both menu and (RSS)
items. Finally, the function setActiveFeed (SET_ACTIVE_FEED) simply saves the
selected item URL in the state.

In a large scalable application, we use multiple Reducers combined together with the
combineReducers function of redux. For this little application, only the Reducer will be
sufficient. Yet, I suggest, we follow the practice:

./app/ts/Reducers/index.ts

import { combineReducers } from "redux";
import app from "./app";

const reducer = combineReducers ({ state: app });
export default reducer;

[260]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

This changes our state tree. So, the top level state object can be described now with the
following interface:

./app/ts/Interfaces/index.ts

export interface IRootState {
state: IAppState;
}

Connecting to the store

We have action creators and we have Reducers and, now, we are about to make them
available across the application. As you can remember from Chapter 5, Creating a Screen
Capturer with NW.js, React, and Redux: Planning, Design, and Development, the module redux
provides the function createstore, which takes in combined reducers to produce the
store. The module react-redux exports the provider higher-order component that accepts
the store with the props and makes it available through connect across the inner
component tree. The function createStore accepts middleware that is combined with the
compose function of redux. As we already discussed in this application, we need
asynchronous actions. Here, we can use the redux-thunk
(https://www.npmjs.com/package/redux-thunk) middleware that allows us to write action
creators, which return functions instead of plain objects. These functions take in references
to the dispatch and getState functions as parameters. So, we can dispatch deferred
actions. For example, we need to read the RSS feed by URL, so we reflect it on the
application state with the following action creator:

function fetchFeedAsync(url) |
return dispatch => {
dispatch(fetchFeedRequest ());

rss(url)
.then(data => dispatch(fetchFeedSuccess(data)))
.catch(e => dispatch(fetchFeedFailure(e)));
bi
}

Before making asynchronous HTTP request for the feed contents, we dispatch
fetchFeedRequest and, when the request is resolved, fetchFeedSuccess or
fetchFeedFailure if it was rejected.

[261]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

It is all nice, but is too verbose. Just to get the data retrieved through HTTP, we write four
(!) action creators. Instead we can follow an optimistic updates approach and go with a
single action creator. That involves an additional middleware redux-promise
(https://www.npmjs.com/package/redux—promise),wﬂﬂCh}ﬂaysrﬁceblwﬁﬂlredux—
actions:

const fetchFeed = createAction
"FETCH_FEED", async (url) => await rss(url)
)

Now, when combining all together, we come up with the following update for the entry
script:

./app/ts/index.tsx

import { Provider } from "react-redux";

import { createStore, applyMiddleware, compose } from "redux";
import thunkMiddleware from "redux-thunk";

import * as promiseMiddleware from "redux-promise";

const storeEnhancer = compose (
applyMiddleware (
thunkMiddleware,
promiseMiddleware
)
)i

const store = createStore
appReducers, storeEnhancer

)

ReactDOM. render (
<Provider store={store}>
<App {...this.props} />
</Provider>,
document .getElementById("root")
)i

In the container component, we need to add two functions that inform connect of how we
want to map state and action creators to the component props:

./app/ts/Containers/App.tsx

// mapping state to the props
const mapStateToProps = (state: IRootState) => state;

import actions from "../Actions/actions";

[262]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

// mapping actions to the props
const mapDispatchToProps = {
...actions

bi

Here, we have mapped the state to the props simply one to one. As we have the store
expnﬁsedas{ state: applicationStateTree LXNereGﬁV&inthepwops,mnex&a
property state pointing at the actual state tree. As for the action creators, we destructure
the namespace and attach every available function as a new property to the props. So the
props of the container components can now be described with the following type:

./app/ts/Interfaces/index.ts

export type TStore = IRootState & IAppActions;
We shall refer to the props with this type in the React . Component generic.

We pass the container component's properties downward by destructuring
store={this.props}. Thus, every child component receives an object of the TStore type

with the property store:

class App extends React.Component<TStore, {}> {
render () {
return (
<div className="main-wrapper">
<ErrorAlert store={this.props} />
<Layout fixedHeader fixedDrawer>
<TitleBar />
<Menu store={this.props} />
<Content>
<Feed store={this.props} />
</Content>
</Layout>
</div>
)i

}

// connect store to App

export default connect (
mapStateToProps,
mapDispatchToProps

) (App);

[263]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

Personally, I find the container to be a good place for bootstrap logic. In particular, I would
like the load menu from localStorage in the start of the application. Actually, it can be
done straight after the container component is mounted:

class App extends React.Component<TStore, {}> {

componentDidMount () {
this.props.fetchMenu() ;
}
}

So, we call the fet chMenu action creator, which is now available in the props. This
dispatches the action, the Reducer modifies the state and any component, and all the
components reflect the state change.

Consuming store from the components

If you were attentive enough, you didn't miss that, in container's JSX, we introduced a new
component ErrorAlert. Since we have an error state (state.feedError), we need to
visualize it:

./app/ts/Components/ErrorAlert.tsx

import * as React from "react";
import { Dialog, DialogTitle,

DialogContent, DialogActions, Button } from "react-mdl";
import { TStore } from "../Interfaces";

interface IProps {
store: TStore;

}

export default class ErrorAlert extends React.Component<IProps, {}> {

private onClose = () => {
this.props.store.setFeedError("");

}

render () A
const { feedError } = this.props.store.state;
return (
<Dialog open={Boolean (feedError) }>
<DialogTitle>Houston, we have a problem</DialogTitle>
<DialogContent>
<p>{feedError}</p>

[264]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

</DialogContent>
<DialogActions>
<Button type="button" onClick={this.onClose}>Close</Button>
</DialogActions>
</Dialog>
)i

}

By using Dialog and related components of the React MDL library, we describe a modal
window, which shows up when state. feedError is not empty. The window has a button
Close, which has a handler onClose subscribed for the click event. The handler calls the
setFeedError action to reset state.feedError

N == i ; T

T

Houston, we
have a
problem

Cannot add feed: Error: Invalid

protocol: http.next:

CLOSE

We can now modify the Menu components to display and manage the RSS menu from the
state:

./app/ts/Components/Menu.tsx
import * as React from "react";

import { Drawer, Navigation, Icon, FABButton } from "react-mdl";
import { IMenultem, TStore } from "../Interfaces";
import AddFeedDialog from "./AddFeedDialog";

interface IProps {
store: TStore;

}

[265]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

export default class Menu extends React.Component<IProps, {}> {

static makeClassName = (toggle: boolean) => {
const classList = ["mdl-navigation__link"];
toggle && classList.push("mdl-navigation__link--current");
return classList.join(" ");

}

private onAddFeed = () => {

this.props.store.toggleOpenAddFeed(true);

private onRemoveFeed = () => {
const { removeFeed, fetchMenu, state } = this.props.store;
removeFeed (state.activeFeedUrl);
fetchMenu () ;

}

private onRefresh = () => {
this.props.store.fetchMenu();

}

render ()<
const { state } = this.props.store,

menu = state.menu || [];

return (

<Drawer className="mdl-color--blue-grey-900 mdl-
color-text--blue-grey-50">
<AddFeedDialog store={this.props.store} />
<Navigation className="mdl-color--blue-grey-80">

{ menu.map((item: IMenultem) => (
<a key={item.id} href={ #${item.id} }
className={Menu.makeClassName (item.url ===
state.activeFeedUrl) }>
<Icon name="& #xEQE5;" />
{item.title}

)) }
</Navigation>
<div className="mdl-layout-spacer"></div>
<div className="tools">
<FABButton mini onClick={this.onAddFeed}>
<Icon name="add" />
</FABButton>
{ state.activeFeedUrl && (
<FABButton mini>

[266]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

<Icon name="delete" onClick={this.onRemoveFeed} />
</FABButton>
)}
<FABButton mini onClick={this.onRefresh}>
<Icon name="autorenew" />
</FABButton>
</div>
</Drawer>

)
}

Here, we take state.menu from the property store and map it to build the list of menu
items. We represent items as links with item.title as contents and item. id (shal of
URL) in href. We use the static method makeClassName to build the item className. It
will be "mdl-navigation__link" normally and "mdl-navigation__link mdl-
navigation__link--current" when the item is an active one. We also subscribe to the
handlers for click events on the Add, Remove, and Refresh (Autorenew icon) buttons. The
first one calls the toggleOpenAddFeed action with true to display the modal window for
adding a feed. The second uses the removeFeed action with activeFeedUrl from the
state. It also calls the fet chMenu action to refresh the aggregative list. The last one simply
calls the fet chMenu action.

Now, we have to create a component representing the modal window with the form to add
a feed:

./app/ts/Components/AddFeedDialog.tsx

import { Button, Dialog, DialogTitle, DialogContent, DialogActions,
Textfield } from "react-mdl";

import * as React from "react";

import { TStore } from "../Interfaces";

interface IProps {
store: TStore;

}
export default class AddFeedDialog extends React.Component<IProps, {}> {

private urlEl: Textfield;
private formEl: HTMLFormElement;

private onSubmit = (e: React.MouseEvent<HTMLFormElement>) => {
// https://github.com/react-mdl/react-mdl/issues/465
const urlEl = this.urlEl as any;

e.preventDefault () ;
this.save(urlEl.inputRef.value);

[267]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

async save(url: string){
const { addFeed, fetchMenu } = this.props.store;
await addfFeed(url);
await fetchMenu();

if ('this.props.store.state.feedError) {
this.formEl.reset ();
}
}
private close = () => {
this.props.store.toggleOpenAddFeed(false);
this.formEl.reset ();
}
render () A
const { 1sOpenAddFeed } = this.props.store.state;
return (
<div>
<Dialog open={isOpenAddFeed}>
<DialogTitle>New Feed</DialogTitle>
<DialogContent>
<form onSubmit={this.onSubmit} ref={(el: HTMLFormElement)
=> { this.formEl = el; }}>
<Textfield
label="URL"
required
floatingLabel
ref={(el: Textfield) => { this.urlEl = el; }}
/>
</form>
</DialogContent>
<DialogActions>
<Button type="button" onClick={this.onSubmit}>Save</Button>
<Button type="button" onClick={this.close}>Cancel</Button>
</DialogActions>
</Dialog>
</div>
)i
}

[268]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

Similar to ErrorAlert, we use Dialog and the related components of React MDL to
render the modal window. The window has a form and an input represented with the
Textfield component of React MDL. We make both elements available in the instance
scope by using the ref attribute. We subscribe the onSubmit method for the form submit
event. In the handler, we take the value from the input field by the reference (Textfieldis
referenced as this.urlEl; thus, internal input can be accessed as this.urlEl.inputRef
according to React MDL API) and pass it to the private method save. The save method
calls addFeed and fetchMenu to update the aggregative list. The window also includes the
Close button, which invokes the t oggleOpenAddFeed action with false on a click event.

That's left just to update the Feed component:

./app/ts/Components/Feed.tsx

import
import

import
import

*

{

as React from "react";
shell } from "electron";

Card, CardTitle, CardActions, Button, CardText }
IRssItem, TStore } from "../Interfaces";

interface IProps {
store:

TStore;

export default class Feed extends React.Component<IProps,

private indexEl: HTMLElement;
private contentsEl: HTMLElement;
private webviewEl: Electron.WebviewTag;

// Convert HTML into plain text
static stripHtml (html: string) {

var tmp = document.createElement ("DIV");
tmp.innerHTML = html;
return tmp.textContent || tmp.innerText || "";

t

private onCloselLink = () => {
this.indexEl.classList.remove("is-open");
this.webviewEl.src = "blank";

t

private onOpenlink = (e: React.MouseEvent<HTMLElement>

const btn = e.target as HTMLElement,

url = btn.dataset["link" 1;

e.preventDefault () ;

from "react-mdl";

{1> A

) => A

[269]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

this.indexEl.classList.add("is-open");
this.webviewEl.src = url;

}
componentDidMount () {
this.webviewEl = this.contentsEl.firstChild as Electron.WebviewTag;
this.webviewEl.addEventListener ("new-window", (e) => {
e.preventDefault () ;
shell.openExternal (e.url);
)i
}
render () {
const { items } = this.props.store.state;
return (

<div className="page-content feed-index" ref={(el: HTMLElement)
=> { this.indexEl = el; }}>
<div className="feed-1list">

{ items.map((item: IRssItem, inx: number) => (
<Card key={inx} shadow={0} style={{width: "100%", height:
"auto", margin: "auto"}}>

<CardTitle expand style={{color: "#fff", backgroundColor:
"$#46B6AC"} >
{item.title}
</CardTitle>
<CardText onClick={this.onCloseLink}>
{ item.description ? Feed.stripHtml(item.description)
Py
</CardText>
<CardActions border>
<Button colored data-link={item.link} onClick=
{this.onOpenLink}>0Open</Button>
</CardActions>
</Card>
))
</div>
<div className="feed-contents"
ref={(el: HTMLElement) => { this.contentskEl = el; }}
dangerouslySetInnerHTML={{
__html: “<webview class="feed-contents__src"></webview>"
Fi></div>
</div>

)

[270]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

Here, we map state.items to render RSS items, while we use the st ripHtml static
method to sanitize item description. Every item is provided with the Open button that has a
subscriber onOpenLink. This method makes visible, the . feed-contents column and
changes the src attribute of webview. This causes WebView to load the feed item URL. Why
do we use WebView and not iFrame? Because WebView is the intended container for guest
contents in both Electron and NW.jS (https://electron.atom.io/docs/api/webview—
tag/). WebView runs in a separate process and it doesn't have the same permission as your
page. So, it's supposed to prevent third-party pages, and scripts that are affecting and
harmful to your application.

We could not reference WwebVview directly because J[SX doesn't have such an element and we
had to inject it. So, we use the componentDidMount life-cycle method to reach it via DOM.
What is more, we subscribe to the new-window event, which happens when the page
loaded within WebView tries to open a new window/tab. We prevent that from happening,
but open the requested page in the external browser instead.

Chin-chin! It's a working application now. So, we can build it:
npm build
And we can run:

npm start

The output will be:

R3S Aggregator

If You're Inlining SVG Icons, How Do You Deal With Unique Titles and IDs?

#342: Some Best Practices for JavaScript Projects

[271]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

If we hit "open" link on any of RSS items the content panel slides in and it loads the
corresponding contents into the WebView:

RSS Aggregator

If You're Inlining SVG Icons, How Do You | 1+« the tenth anniversary of C55-Trick
Deal With Unique Titles and IDs? mad

Bl css-Tricks

If You're Inlining SVG Icons, How
Do You Deal With Unique Titles
and IDs?

BY CHRIS COYIER ONM JULY 7, 2017
Firebase & React Part 2: User °
Authentication

) /(> seems to be the easiest and most flexible
icon system. But that chunk of <sva> might have a

<title> , and you might be appying IDs to both of those
elements for various reasons.

QOne of those reasons might be because you just want an ID

Creating router service

Everything is fine, except we cannot really select a feed from the menu. We have the state
property activeFeedUrl, which is already considered by the Menu component, but we
have never used the setActiveFeed action so far to set this state. Nonetheless, in the Menu
component, we provided all the items with hash links. To serve browser location
navigation, we need a router. There are many implementations available as installable
modules. Yet, in this simple example, we will create our own:

./app/ts/Services/Router.ts
import * as Redux from "redux";
import { IRootState, IMenultem } from "../Interfaces";
import actions from "../Actions/actions";

export default class Router {

constructor (private store: Redux.Store<IRootState>) {

}

[272]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

getFeedUrlById(id: string): string {
const { state } = this.store.getState(),
match = state.menu.find((item: IMenultem) => item.id ===
id),

return match ? match.url : "";

}

register () {
window.addEventListener ("hashchange", () => {
const url = this.getFeedUrlById(window.location.hash.substr(1));
this.store.dispatch(actions.setActiveFeed(url));
url && this.store.dispatch(actions.fetchFeed(url));
)i

}

On the construction, the service takes in the store instance and assigns it to the private
property store. With the register method, we subscribe to the document hashchange
event, which triggers every time the location.hash changes. It happens, for example,
when we request from the address bar something like #some~id. In the handler function,
we extract SHA1 from location.hash (everything what follows # symbol) and use the
getFeedUrlById method to find the associated feed URL (we provide items with IDs in
the add method of the Menu service). As we have the URL, we dispatch the setActiveFeed
action to set the activeFeedUrl state property. In addition, we dispatch fetchFeed to
fetch the selected feed.

We can now enable the service in entry script as follows:
./app/ts/index.tsx

const router = new Router(store);
router.register();

Summary

We started this chapter by implementing the rss service. We used the request module to
fetch feed contents. We obtained a Writable Stream from the feedme module and
configured it to parse the input into our feed container object. We piped the feedme parser
into the Readable Stream produced by request. The module feedme was missing the
declaration file, so we provided it with an interface.

[273]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

Then, we created the Menu service, which can be used to manage and persist the menu of
feeds. We considered actions and state structure required by the application. We applied
the redux-actions module for creating actions and the Reducer. On the way, we
examined the optimistic updates approach. While creating the store, we practiced two store
enhancers redux-thunk and redux-promise that help to deal with asynchronous actions.
We connected our existing components to the store and modified them accordingly. Besides
this, we have written two new components, both utilizing the Dialog component of React
MDL library. The first one displays an application error if it occurs. The second shows and
handles the feed adding form. Among other things, we made the Feed component to load
the feed item URL on demand. So, you learned to use the webView tag for the guest
contents. What is more, we subscribed to the new-window event to force any request for
opening a new window from the WebView to open in an external browser. Finally, we
created a simple router to serve navigation in the feed menu.

[274]

A

abstract classes 226
array type 222
Atom IDE
URL 105
autoupdate, File Explorer 96
autoUpdater
reference 157

B

bar 122
Behavior-driven Development (BDD) 53
Bintray
URL 158
Blocks Elements Modifiers (BEM) 19

C

chat services
implementing 135, 136, 138, 140, 141
chat system
application blueprint 103
chat services, implementing 135
creating, with Electron and React 103
deploying 157, 160, 161, 162
DevTools extensions, enabling 118
distribution 156
functionality, to components 141, 143, 145, 148,
150
packaging 156
static prototype 119
title bar, revitalizing 128
unit-tests, writing 150
updates 157, 160, 161, 162
WebSockets, utilizing 131
Chromium
URL 9

Index

class type 224
command-line options, File Explorer 90, 91
Computed property names 182
context menu, File Explorer 73
context menu, File Explorer with NW.js 73
Custom Properties

URL 25

D

Decorator pattern
reference 184
decorators
reference 167, 184
default function parameter 44
DevTools extensions
enabling 118
reference 118
DOM-related interfaces
reference 228

E

ECMAScript Internationalization API
reference 68
EcmaScript specification 167
electron-release-server
reference 157
Electron
about 7,105
URL 105
using 105,106, 108
using, with React 113, 114, 116
enum type 226
env
reference 152
ES Class Fields & Static Properties
reference 114

F H

feedme library Holy Grail Layout 9
URL 230, 245 HTML prototype
File Explorer, with NW.js about 18
application blueprint 7 base rules, defining 20, 21
autoupdate 96, 98, 100, 101, 102 CSS variables, defining 25, 26, 28
command-line options 90 directory list, styling 32
context menu 73, 75, 78 file list, styling 33
creating 7 footer, styling 36, 38, 39, 40
functional requirements, fulfilling 40, 41 header, sticking 28
HTML prototype 18 layouts, defining 21, 22, 24
internationalization 64 maintainable CSS 18, 19
localization 64 title bar, sticking 28
menu, system tray 83, 85, 88 title bar, styling 30
native look and feel 92, 93 http-server module
packaging 95 reference 134
service, writing for navigating through directories
49, 51
source code protection 93 index signature 222
system clipboard 79 indexable type 222
view modules, writing 57 internationalization (i18n) 64
windowing actions, handling 46 internationalization and localization, File Explorer
Flow with NW.js
URL 218 about 64
function type 223 date format, by country 65, 67
functional requirements, File Explorer with NW.js multilingual support 69, 70
arrow functions 45 intersection type 227
classes 43, 44 ipcMain
destructuring 45, 46 reference 159
ES2015 41, 42
functional requirements 40 J
gette.rs and setters 44 Jasmine
scoping 42 URL 52

template literal 44

. Lifting state up 142
generic type 228
global keyboard shortcuts M
registering 212,214, 215

global libraries 229 Material Design system

Google Material Design guidelines URL. 37
URL 169 Material Icons
Grid Layout URL. 170 .
URL 34 Material-Ul toolkit
URL 169

[276]

N

Node Package Manager (npm) 10, 11, 12, 14, 15,
16,17
Node.js
download link 10
Nuts
reference 157
NW.js
about 7
project, setting up 9

P

packaging, File Explorer 95
parameter property 225
Photonkit
URL 119
plain object type 222
Pragmatic CSS styleguide
reference 20
predictable state container 176

R

React MDL
about 234
URL 234
React
about 109
using 110,111,112
Reducer
reference 254
Redux DevTools
about 194
using 194, 195
redux-act library
URL 180
redux-actions module
URL 253
redux-promise middleware
URL 262
Redux
about 164
comprehending 176, 177,178,179, 180
tooling 191, 193
unit-testing 196

[277]

request module
URL 245

Responsive Web Design (RWD) 25

router service
creating 272

RSS Aggregator
actions, using 252, 255, 257
connecting, to store 261, 263, 264
container component, creating 237
custom styles, adding with SASS 241
developing 216
development environment, setting up 231
feed component, creating 239
index.html, creating 235
Menu component, creating 238
React-MDL 234
Reducers, implementing 252, 255, 257
router service, creating 272
service, creating to fetch RSS 245, 246, 249
service, creating to manage feed menu 249
static prototype, creating 230
store, consuming from components 264, 269,

271

TitleBar component, creating 237

S

SASS
custom styles, adding for RSS Aggregator 241
screen capturer
application state 180, 182, 187, 189
developing 164
development environment, setting up 166, 168
global keyboard shortcuts, registering 212, 214,
215
Redux, comprehending 176, 177,178, 179, 180
screencast, recording 205, 206
screenshot, creating 199, 200, 202
static prototype 169, 172, 176
system tray, implementing 209, 212
Semantic Versioning
URL 12
service, for navigating through directories
unit testing 52, 56
writing 49
sha1 module

reference 251 plain object type 222

Sinon library union type 227
URL 60
source code protection, File Explorer 93 U
Squirrel Uniform Resource Identifier (URI) 81
reference 157 union type 227
stage-3 preset unit-testing, Redux
URL 167 about 196
static prototype, chat system 119, 120, 121, 124, action creator, testing 196
126

reducers, testing 197

Sticky positioning 29 unit-tests, chat system

system clipboard, File Explorer writing 150, 151, 152, 154
about 79
graphics, transferring 80 V

text and graphics, receiving 81, 82
text transferring 79
system tray, File Explorer
menu 83
system tray
implementing 209, 212

value object
reference 223
view modules, File Explorer with NW.js
DirList module 57
FileList module 60
title bar path module 61

T unit testing 59, 60
writing 57
Tabbed Document Interface (TDI) 166 Visual Studio Code
template literals 44 URL 105
title bar, chat system
revitalizing 128, 129, 131 W
- .
ypeScript WebRTC
about 218 URL 199
abstract classes 226
array type 222 WebSockets
. utilizing, in chat system 131, 132, 134, 135
basic types 220)
WebView
class type 224 bout 271
development environment, setting up 219 3R0Iij -

enum type 226
function type, using 223
generic type 228
global libraries 229
indexable type 222
intersection type 227

windowing actions
handling 46, 48

WireframeSketcher
URL 8, 165, 217

Writable Stream
URL 246

	Cover
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Creating a File Explorer with NW.js-Planning, Designing, and Development
	The application blueprint
	Setting up an NW.js project
	Node Package Manager
	An HTML prototype
	Maintainable CSS
	Defining base rules
	Defining layouts
	Defining CSS variables
	Sticking the title bar and header
	Styling the title bar
	Styling the directory list
	Styling a file list
	Styling the footer

	Fulfilling the functional requirements
	Starting with ES2015
	Scoping
	Classes
	The template literal
	Getters and setters
	Arrow functions
	Destructuring

	Handling windowing actions
	Writing a service to navigate through directories
	Unit-testing a service

	Writing view modules
	The DirList module
	Unit-testing a view module
	The FileList module
	The title bar path module

	Summary

	Chapter 2: Creating a File Explorer with NW.js – Enhancement and Delivery
	Internationalization and localization
	Date format by country
	Multilingual support

	Context menu
	System clipboard
	Transferring text
	Transferring graphics
	Receiving text and graphics

	Menu in the system tray
	Command-line options
	Native look and feel
	Source code protection
	Packaging
	Autoupdate
	Summary

	Chapter 3: Creating a Chat System with Electron and React – Planning, Designing, and Development
	Application blueprint
	Electron
	React
	Electron meets React
	Enabling DevTools extensions
	Static prototype
	Summary

	Chapter 4: Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery
	Revitalizing the title bar
	Utilizing WebSockets
	Implementing chat services
	Bringing functionality to the components
	Writing unit-tests
	Packaging and distribution
	Deployment and updates
	Summary

	Chapter 5: Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and Development
	Application blueprint
	Setting up the development environment
	Static prototype
	Comprehending redux
	Introducing the application state
	Summary

	Chapter 6: Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing
	Tooling Redux
	Redux DevTools
	Unit-testing Redux
	Testing action creator
	Testing reducers

	Taking a screenshot
	Recording a screencast
	Taking advantage of the system tray
	Registering global keyboard shortcuts
	Summary

	Chapter 7: Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development
	Application blueprint
	Welcome to TypeScript
	Setting up the development environment for TypeScript
	Basic types
	Array, plain objects, and indexable types
	Function type
	Class type
	Abstract classes
	Enum type
	Union and intersection types
	Generic type
	Global libraries

	Creating static prototype
	Setting up the development environment for the application
	React-MDL
	Creating the index.html
	Creating the container component
	Creating the TitleBar component
	Creating the Menu component
	Creating the feed component
	Adding custom styles with SASS

	Summary

	Chapter 8: Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development
	Creating a service to fetch RSS
	Creating a service to manage feed menu
	Actions and Reducers
	Connecting to the store
	Consuming store from the components
	Creating router service
	Summary

	Index

