

Cross-platform Desktop
Application Development-
Electron, Node, NW.js, and
React

Dmitry Sheiko

BIRMINGHAM - MUMBAI

Cross-platform Desktop Application
Development-Electron, Node, NW.js, and
React
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book. Packt Publishing has endeavored to provide trademark
information about all of the companies and products mentioned in this book by the
appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of
this information.

First published: July 2017

Production reference: 1260717

ISBN 978-1-78829-569-7

Credits

Author
Dmitry Sheiko

Copy Editors
Dhanya Baburaj
Shaila Kusanale
Akshata Lobo

Reviewer
Dobrin Ganev

Project Coordinator
Devanshi Doshi

Commissioning Editor
Smeet Thakkar

Proofreader
Safis Editing

Acquisition Editor
Shweta Pant

Indexer
Mariammal Chettiyar

Content Development Editor
Roshan Kumar

Graphics
Jason Monteiro

Technical Editor
Akhil Nair

Production Coordinator
Shraddha Falebhai

About the Author
Dmitry Sheiko is a web developer, blogger, and open source contributor, living and
working in the lovely city of Frankfurt am Main, Germany.

Dmitry got hooked on computer programming in late 80s. Since 1998, he has been in web-
development. Over the last few years, Dmitry has been creating desktop applications with
NW.js/Electron. The very first solutions were made with JavaScript/Backbone, but then he
switched to TypeScript/React/Redux.

Dmitry has authored dozens of projects at GitHub, including: nw-autoupdater, Pragmatic
CSS, and a CommonJS compiler.

First, I would like to thank my family for their continuous support and for allowing me to
realize my own potential. A special thanks to my father who first took me to an industrial
computer center when I was about 3 years old. In a decade, with the advance of PCs, I
realized that computers mean games and after a while, became curious enough about how
the games were built to start learning programming.
Thanks to Crytek for giving me the opportunity to pursue my passion for research and
development.

About the Reviewer
Dobrin Ganev is a Calgary-based software developer with years of experience in various
domains, from large-scale distributed applications to frontend web development with the
latest JavaScript frameworks. In recent years, he has been focusing on architecting and
prototyping solutions in various subjects, such as enterprise search, GIS, predictive
analytics, and real-time distributed systems.

www.PacktPub.com
For support files and downloads related to your book, please visit .

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at for more details.

At , you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at .

If you'd like to join our team of regular reviewers, you can e-mail us at
. We award our regular reviewers with free eBooks and

videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

This book is gratefully dedicated to my beloved wife Olga and son Jan.
My dears, you were both so supportive and patient throughout my time of writing.

You helped me bring this book to life..

Table of Contents
Preface 1

Chapter 1: Creating a File Explorer with NW.js-Planning, Designing, and
Development 7

The application blueprint 7
Setting up an NW.js project 9
Node Package Manager 10
An HTML prototype 18

Maintainable CSS 18
Defining base rules 20
Defining layouts 21
Defining CSS variables 25
Sticking the title bar and header 28
Styling the title bar 30
Styling the directory list 31
Styling a file list 33
Styling the footer 36

Fulfilling the functional requirements 40
Starting with ES2015 41
Scoping 42
Classes 43
The template literal 44
Getters and setters 44
Arrow functions 45
Destructuring 45

Handling windowing actions 46
Writing a service to navigate through directories 49

Unit-testing a service 52
Writing view modules 57

The DirList module 57
Unit-testing a view module 59
The FileList module 60
The title bar path module 61

Summary 62

[ii]

Chapter 2: Creating a File Explorer with NW.js – Enhancement and
Delivery 64

Internationalization and localization 64
Date format by country 65
Multilingual support 69

Context menu 73
System clipboard 79

Transferring text 79
Transferring graphics 80
Receiving text and graphics 81

Menu in the system tray 83
Command-line options 90
Native look and feel 91
Source code protection 93
Packaging 95
Autoupdate 96
Summary 102

Chapter 3: Creating a Chat System with Electron and React – Planning,
Designing, and Development 103

Application blueprint 103
Electron 105
React 109
Electron meets React 113
Enabling DevTools extensions 118
Static prototype 119
Summary 127

Chapter 4: Creating a Chat System with Electron and React –
Enhancement, Testing, and Delivery 128

Revitalizing the title bar 128
Utilizing WebSockets 131
Implementing chat services 135
Bringing functionality to the components 141
Writing unit-tests 150
Packaging and distribution 155
Deployment and updates 157
Summary 163

[iii]

Chapter 5: Creating a Screen Capturer with NW.js, React, and Redux –
Planning, Design, and Development 164

Application blueprint 164
Setting up the development environment 166
Static prototype 169
Comprehending redux 176
Introducing the application state 180
Summary 190

Chapter 6: Creating a Screen Capturer with NW.js: Enhancement,
Tooling, and Testing 191

Tooling Redux 191
Redux DevTools 194
Unit-testing Redux 196

Testing action creator 196
Testing reducers 197

Taking a screenshot 199
Recording a screencast 204
Taking advantage of the system tray 208
Registering global keyboard shortcuts 212
Summary 215

Chapter 7: Creating RSS Aggregator with Electron, TypeScript , React,
and Redux: Planning, Design, and Development 216

Application blueprint 216
Welcome to TypeScript 218
Setting up the development environment for TypeScript 219

Basic types 220
Array, plain objects, and indexable types 221
Function type 223
Class type 224
Abstract classes 226
Enum type 226
Union and intersection types 227
Generic type 228
Global libraries 229

Creating static prototype 230
Setting up the development environment for the application 231
React-MDL 234
Creating the index.html 235

[iv]

Creating the container component 236
Creating the TitleBar component 237
Creating the Menu component 238
Creating the feed component 239
Adding custom styles with SASS 240

Summary 243

Chapter 8: Creating RSS Aggregator with Electron, TypeScript, React,
and Redux: Development 245

Creating a service to fetch RSS 245
Creating a service to manage feed menu 249
Actions and Reducers 252
Connecting to the store 261
Consuming store from the components 264
Creating router service 272
Summary 273

Index 275

Preface
HTML5 desktop application development is gaining momentum, and it s no wonder if you
take into consideration that JavaScript is now the most popular programming language on
the web. The set of HTML5 features combined with Node.js and the runtime API is
impressively rich, to say nothing of the countless Node.js modules available on GitHub. In
addition, HTML5 desktop applications can be distributed across different platforms
(Window, macOS, and Linux) without any modifications in the code.

The goal of this book is to help the reader discover what exciting opportunities unlock
Node.js-driven runtime (NW.js and Electron) to a JavaScript developer and how
surprisingly easy it is to catch up on programming specifics in this area.

What this book covers
, Creating a File Explorer with NW.js - Planning, Designing, and Development, shows

that development starts with the blueprint of the file explorer application. We set up a
development environment for NW.js and get a crash course on npm, which we will use to
install any additional software, and build and run applications. We develop a static
prototype of the application. On the way, we learn the best practices for writing
maintainable CSS and get a brief introduction to ES2015.

, Creating a File Explorer with NW.js - Enhancement and Delivery, covers the
extension and finalization of the application. For that, we master desktop environment
integration APIs such as the clipboard, context menu, and tray. We provide file explorer
with support for multiple languages and locales. We make it respond to command-line
options. We examine pre-production aspects such as code protection, packaging, and
autoupdate.

, Creating a Chat System with Electron and React - Planning, Designing, and
Development, teaches us how to develop a chat system with Electron and React so, we get an
introduction to both of them. We configure the Webpack bundler to transpile React
components with JSX syntax. In addition, we make it process CSS files requested as
modules. Thus, we can load the assets of the Electron-dedicated library Photonkit. We add
the DevTool React extension in Electron and come up with a static prototype at the end of
the chapter.

Preface

[2]

, Creating a Chat System with Electron and React - Enhancement, Testing, and Delivery,
covers bringing the application to life. We use the Electron API and React state to
implement windowing functions. We learn to use the WebSocket API to provide the chat
with bidirectional communication. We examine the unit testing of views and services, and
explore Electron-specific packaging, distribution, and autoupdates.

, Creating a Screen Capturer with NW.js, React, and Redux - Planning, Design, and
Development, explains how to build a screen capturer based on global application state
driven by Redux. In development, we use ready-made React components from the Material
UI library. At the end of the chapter, we have a static prototype.

, Creating a Screen Capturer with NW.js - Enhancement, Tooling, and Testing, outlines
how to make the application take screenshots and record screencasts. We learn to use
WebRTC APIs to get the video stream. We make it generate a still frame image for
screenshots and capture the video stream in a file for screencasts. We use the Notification
API to inform the user about actions performed, regardless of what window is in focus. We
make capturing actions available via global keyboard shortcuts.

, Creating RSS Aggregator with Electron, TypeScript , React, and Redux - Planning,
Design, and Development, prepares us to develop a RSS aggregator. For that application, we
take advantage of static typing with TypeScript and so, learn the essentials of programming
languages. We build a static prototype with the React components of the React MDL library.

, Creating RSS Aggregator with Electron, TypeScript, React, and Redux - Development,
explores how to develop the application. On the way, we will learn to use asynchronous
actions, and access the store from React components and from services. We will also
examine the peculiarities of rendering guest content in Electron.

What you need for this book
To build and run the examples in this book, you need either Linux or macOS; you will also
need npm/Node.js. At the time of writing, the author tested the examples with the
following software:

npm v.5.2.0
node v.8.1.1
Ubuntu 16.04 LTS, Windows 10, and macOS Sierra 10.12

Preface

[3]

Who this book is for
This book has been written for any developers interested in creating desktop applications
with HTML5. The first two chapters require essential web-master skills (HTML, CSS, and
JavaScript) and the basics of Node.js. This part of the book includes a crash course on npm,
which will be used across the book to build and run examples, given that you have
experience with the command line in your OS (Linux, macOS, or Windows). The next four
chapters welcome a minimal experience with React. And finally, for the last two chapters, it
would be helpful to have a basic knowledge of TypeScript.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Well, we
can change the locale and trigger the event. What about consuming modules?
In the view, we have the static method that formats the passed-in

 for printing. We can make format it in accordance with the currently chosen
."

A block of code is set as follows:

Any command-line input or output is written as follows:

sudo npm install nw --global

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "The menu Show Item
contains Folder, Copy, Paste, and Delete."

Preface

[4]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book--what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail , and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at .

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at

. If you purchased this book elsewhere, you can visit
and register to have the files e-mailed directly to you. You can download the

code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.

Preface

[5]

Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at

. We also have other code bundles from our rich catalog of books and videos
available at . Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from

.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting ,
selecting your book, clicking on the Errata Submission Form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website or added to any list of existing errata under the Errata
section of that title.

To view the previously submitted errata, go to
and enter the name of the book in the search field. The required information will

appear under the Errata section.

Preface

[6]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at

, and we will do our best to address the problem.

11
Creating a File Explorer with

NW.js-Planning, Designing, and
Development

Nowadays, when speaking of HTML5 desktop application development, one implies either
NW.js or Electron. The first one has a shorter learning curve, which makes it a better choice
for the beginning. Our first application will be a File Explorer. This sort of software is
traditionally considered as a classical desktop application. I believe that you will find it
exciting to build a File Explorer with HTML, CSS, and JavaScript. This chapter requires no
skills in JavaScript frameworks, as we will use none. All you need is a basic knowledge of
HTML, CSS, and plain JavaScript (including Node.js).

So, what are we up to? We will plan and sketch the project. We will set up the development
environment and create a static prototype and run it with NW.js. We will implement the
basic functionality, making it ready to be enhanced in , Creating a File Explorer
with NW.js–Enhancement and Delivery.

The application blueprint
By File Explorer, I mean a small program that allows navigating through the filesystem and
performs basic operations on the files, which can be expressed with the following user
stories:

As a user, I can see the content of the current directory
As a user, I can navigate through the filesystem
As a user, I can open a file in the default associated program

Creating a File Explorer with NW.js-Planning, Designing, and Development

[8]

As a user, I can delete a file
As a user, I can copy a file in the clipboard and paste it later in a new location
As a user, I can open the folder containing the file with the system file manager
As a user, I can close the application window
As a user, I can minimize the application window
As a user, I can maximize and restore the application window
As a user, I can change the application language

It would be easier to perceive it in a visual form, wouldn't it? Wireframes come in handy
here. Wireframe is a skeletal framework of the application that depicts the arrangement of
the application's content, including UI elements and navigation system. Wireframe has no
real graphics, typography, or even colors. It shows schematically, what the application
does. As you know, drawing with a pencil on a paper is possible, but it is not the best way
to create a wireframe; what we need is a prototyping tool. Today, there are plenty of
solutions on the market. Here, I use an impressive, but affordable tool called
WireframeSketcher (). It allows you to sketch web,
desktop, and mobile applications (just what we need). It also has a rich mock-up gallery of
stencils, widgets, icons, and templates that makes prototyping fast and easy. Besides, the
wireframes look nice in a sketchy style:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[9]

What we can see on the wireframe is often called a Holy Grail Layout. In our case, the
header serves as the window title bar. There, we keep our controls for window actions such
as close, maximize, and minimize. Besides that, in the title bar, we display the path to the
current directory. In the sidebar, we have our filesystem navigation. The main section
contains a table that represents files of the current directory. It has columns--Name, Size,
and Modified. A right-click on a file opens a context menu with available file operations.
The footer comprises the application title and a language selector combo box.

Setting up an NW.js project
NW.js is an open source framework for building HTML, CSS, and JavaScript applications.
You can also see it as a headless browser (based on Chromium

) that includes Node.js runtime and provides desktop
environment integration API. Actually, the framework is very easy to start with. What we
need is just a start page HTML file and project manifest file ().

To see it in action, we will create a project folder named at an arbitrary
location. The choice of the folder location is up to you, but I personally prefer to keep web
projects in on Linux/macOS and on
Windows.

As we enter the directory, we create placeholder folders for JavaScript and CSS sources (
and):

Creating a File Explorer with NW.js-Planning, Designing, and Development

[10]

We also place a start page HTML () that consists of just a few lines:

As you can guess, we shall see just this text--File Explorer-- when feeding this file to a
browser.

Now, we need the Node.js manifest file (). Node.js, embedded in the
framework, will use it to resolve dependency package names when called with a
function or from an npm script. In addition, NW.js takes from it the project configuration
data.

Why not create the manifest file and populate it with dependencies using the npm tool?

Node Package Manager
Nowadays, Node Package Manager (npm) is one of the most demanded gadgets in the web
developer tool belt. It's a command-line utility connected with the corresponding online
repository of packages and is capable of package installation, version management, and
dependency management. So, when we need a package (library, framework, and module),
we will check whether it's available in the npm repository and run npm to bring it into our
project. It not only downloads the package, it also resolves its dependencies and does it
pretty smartly. Furthermore, npm is pretty handy as an automation tool. We can set various
command-line tasks to refer any of the locally installed packages by name. The npm tool
will find the executable package among installed packages and run it.

The npm tool is distributed together with Node.js. So, you can find an installer for Windows
or for macOS on the Node.js download page (). It is also
available as an APT package, so you can install it for Linux with the tools:

sudo apt-get install npm

If you have already installed npm, ensure that it's up to date:

sudo npm install npm@latest -g

Creating a File Explorer with NW.js-Planning, Designing, and Development

[11]

As I have already said, we can install packages with npm-- for example, NW.js. If we want
to do it globally, we will run the following command:

sudo npm install nw --global

Alternatively, we can run the following command:

sudo npm i nw -g

This will download the latest build of NW.js in and place
the executable file in . It adds the binary to the environment variable,
so one can call in any location in the shell.

 In order to find out what is one can run:
. On Linux/macOS it will be . On

Windows

This way, we will have a single instance of NW.js across the system, but what if an
application requires a specific version of NW.js? Luckily, with npm, we can also install a
package locally, and therefore, rely on a particular version that addresses our application. In
addition, we can manage local dependencies in the file. With a single
command, npm can install/update all the dependencies enlisted there at once.

Let's take a look at how it works on our project. We go to the project root (the
 folder) and run the following command:

npm init -y

It produces a file with the following content:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[12]

Here, in the field, we set our application name. Beware that NW.js will use the
provided value to name the directory in a system-dependent path for the project persistent
data (). So, it shall be a unique, lowercase alpha-numeric, but may
include a few special symbols, such as , , and .

Field version expects the application version as a string, conforming to the Semantic
Versioning standard (). What it all boils down to is a composite
product version out of three numbers separated with dots. The first number (MAJOR)
increments when we make incompatible API changes, the second number (MINOR)
increases when we introduce a new functionality, and the last one (PATCH) identifies bug
fixes.

In the field, we let NW.js know where to find our start page HTML. We have to edit
the manifest to change its value with :

The field accepts a key value object with automation scripts for the project. By
default, it has a placeholder for tests. Now, run the following command:

npm run test

The Shell responds with an error message saying no test specified, as we have no test yet.
However, we will need a script to start the application. So, we edit again
and add to field the following lines:

Now, we can type or to run NW.js on the project root, but we
do not have the framework installed, yet. We are just about to bring it in.

Creating a File Explorer with NW.js-Planning, Designing, and Development

[13]

Manifest fields--such as description/keywords and author--help other
people to discover the application as a package. The field tells
people how they are permitted to use the package. You can find more
about these fields and other possible options at

.

Before telling npm to install the framework, we note that the standard version of NW.js
doesn't include DevTools, which we definitely will need for development. So, we look for a
specific version, the so-called SDK flavor. To find out the package versions that are
available for the NW.JS package (), we run the following command:

npm view nw dist-tags

Alternatively, we can run the following command:

npm v nw dist-tags

This receives the following output:

{
 latest: '0.20.3',

alphasdk: '0.13.0-alpha4sdk',
alpha5sdk: '0.13.0-alpha5sdk',
alpha6sdk: '0.13.0-alpha6sdk',
alpha7sdk: '0.13.0-alpha7sdk',
sdk: '0.20.3-sdk'

}

From this payload, we can assume that the latest version at the time of writing is
and that it is accompanied with . So, we can install the framework, as follows:

npm install nw@0.20.3-sdk --save-dev

Alternatively,we can install it, as follows:

npm i nw@0.20.3-sdk -D

Actually, since we know that the package has a dist-tag called , we can also do it as
follows:

npm i nw@sdk -D

Just after running any of these commands, we can find a new subdirectory named
. There, npm installs local dependencies.

Creating a File Explorer with NW.js-Planning, Designing, and Development

[14]

Have you noticed that we applied the option? This way, we requested
npm to save the package in our development dependency list. Observe that
is changed:

"devDependencies": {
 "nw": "^0.20.3-sdk"
 }

We installed the package as a development dependency because this SDK version is meant
only for development. In , Creating a File Explorer with NW.js–Enhancement and
Delivery we will examine the distribution and packaging techniques. So, you will see how
we can bundle the application with a platform-specific NW.js production build.

Since we have reflected our dependency in the manifest file, we can update this and any
further packages any time by running the following command:

npm update

If we lose (for example after cloning the project from remote GIT repository
given the dependency folder is usually in the ignore list), we can install all the
dependencies through the following command:

npm i

Have you noticed? In the , we assigned package with version in, so
called, caret range . That means during the install/update process, npm will
accept new versions with patch and minor updates, but no major versions.

Creating a File Explorer with NW.js-Planning, Designing, and Development

[15]

The following are some useful npm commands:
: Installs the latest available version of a package

: Installs a concrete version of the package
: Installs package as a dependency and saves it in

: Installs package as a development dependency and
save in

: Installs all the dependencies (including development ones) enlisted
in

: Installs dependencies but not development ones
: Shows all the installed dependencies

: uninstalls a package and removes it from
: shorter syntax

At this point, we have the framework instance and pointing to
. So, we can run the only script we have defined in the manifest file so far:

npm start

First, run it on NW.JS in Ubuntu:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[16]

Then, run it on NW.JS in windows:

Finally, we run it in macOS:

NW.js created a window and rendered in it. It took the default Window
parameters. If we want to customize them, we will need to edit .

Creating a File Explorer with NW.js-Planning, Designing, and Development

[17]

First, we will add the field that accepts an object with the following properties:

: This specifies a relative path to the window icon.
: This indicates whether the window is visible when the application

starts or not. For instance, you can set it to false in the manifest and then change it
programmatically with JavaScript ().

: This makes the window frameless when set to .
: This sets the window default size in pixels.

: This sets a minimal acceptable
size to the window.

: This specifies where the window shall be placed. The value
can be , , or .

: When set to , this property makes the window
resizable.

We will also use the field to specify the command-line arguments that we
want to pass to chromium. Here, we set it to to switch NW.js into the
corresponding mode. So, we could access the browser and the NW.js API directly from
Node.js modules. NW.js introduces Node.js context in addition to the browser context and
keep them separate. After extending it with NWJS meta-data the manifest looks as follows:

These are just a few preferences set for our simple application. All the available options can
be found at .

Creating a File Explorer with NW.js-Planning, Designing, and Development

[18]

An HTML prototype
We've just reached the point where we can start templating our application. Using HTML
and CSS, we will achieve the intended look and feel. Later, we will bind JavaScript modules
to the acting elements.

We start by replacing the content of with the following code:

Here, we just defined the page layout with semantically meaningful HTML tags. As you can
see, we refer to that we are about to create.

Maintainable CSS
Before we start styling, I would like to talk briefly about the importance of maintainability
in CSS. Despite the fact that CSS is a declarative language, it requires no less diligence than
any other code in general. When browsing a public repository, such as GitHub, you can still
find plenty of projects where all the styles are put in a single file that is full of code smells (

) and has no consistency in class
naming.

Creating a File Explorer with NW.js-Planning, Designing, and Development

[19]

Well, it will not be much of a problem at the beginning, but CSS as any other code tends to
grow. Eventually, you will end up with thousands of lines of rotting code often written by
different people.

Then, you have to fix the UI element appearance, but you realize that dozens of existing
CSS declarations across the cascade impact this element. You change one, and styles break
unpredictably on other elements. So, you will likely decide to add your own rules
overriding existing styles. After that, you may find out that some of the existing rules have
a higher specificity, and you will have to use brute force through the cascade; every time it
is going to be worse.

To avoid this maintainability problem, we have to break the entire application UI into
components and design the CSS code so as to keep them reusable, portable, and conflict
free; the following heuristics may come in handy:

Split the whole CSS code into modules that represent components, layouts, and
states
Always use classes for styling (not IDs or attributes)
Avoid qualified selectors (selectors with tags such as , , , and)
Avoid location dependency (long selectors such as , , , and

)
Keep selectors short
Do not use reactively

There are different methodologies that help to improve CSS maintainability. Probably, the
most popular approach is Blocks Elements Modifiers (BEM). It introduces a surprisingly
simple, but powerful concept (). It
describes a pattern for class names that encourages readability and portability. I believe that
the best way to explain it is by an example. Let's say we have a component representing a
blog post:

In BEM terminology, this markup represents a block that we can define with a class name
. The block has two elements-- and . Elements are integral

parts of a block; you cannot use them out of the parent block context.

Creating a File Explorer with NW.js-Planning, Designing, and Development

[20]

Now imagine that we have to highlight one post of the list. So, we add a
modifier to the block's classes:

At first, class names containing double dashes and underscores may make you dizzy, but
after a while you will get used to it. The BEM naming convention helps developers
remarkably by showing indention. So when reading your own or somebody else's code, you
can quickly figure out by its name what the purpose of a class is.

In addition to the BEM naming convention, we will use a few ideas from the Pragmatic CSS
styleguide (). We will give names prefixed with
and to the classes representing global states (for example, and

); we will prefix layout-related classes with (for example,). Finally, we will
amalgamate all CSS files in two folders (and).

Defining base rules
Firstly, we will create a directory and place the reset styles in there:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[21]

For HTML scope, we will enable font smoothing for better font rendering.

Then, we will set box sizing of every element () in . The default CSS box
model is , where width and height set to an element do not include padding
and border. However, if we are setting, let's say, a sidebar width , I would expect it to
cover this length. With , the box's size is always exactly what we set it,
regardless of padding or border, but if you ask me, the mode feels more
natural.

We will reset indents and markers--for an unordered list--that are used for navigation (
). We make body element span the height of the entire viewport (

), remove the default margin, and define the font family.

We will also introduce a global state that can be applied on any element to
remove it from the page flow. By the way, that is a good example of proactive and,
therefore, permissible use of . By adding an class (with JavaScript),
we state that we want the element to hide, with no exceptions. Thus, we will never run into
a specificity problem.

Defining layouts
That's enough for base styles; now, we will start on the layout. First, we will arrange the
title bar, main section, and footer:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[22]

To achieve this design, we should preferably use Flexbox. If you are not familiar with this
layout mode, I will recommend the article, Understanding Flexbox: Everything you need to
know (). It provides probably the most clear and easy-to-catch-up
way of explaining what a Flexbox is, what options are available, and how to use them
efficiently.

So, we can define the application layout like that:

We make a flex container that arranges inner items along a cross axis, vertically
(). In addition, we request the flex items to fill in the full
height of the container (). We set the title bar and footer to a fixed
height always (). However, the main section may shrink and grow
depending on the viewport size ().

Since we have an application layout, let's define the inner layout for the main section:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[23]

What we need to do is to make items-- and --to arrange horizontally
one after another:

In the preceding code, we set the flex items to line up along an main axis horizontally using
. The item has a fixed width and its width

depends on the viewport.

Actually, it's hard to see any results of our work until we give the components some colors:

We also colorise the component:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[24]

and the component:

and eventually the component:

Now, we only need to include all the modules in the index file:

:

As it's done, we launch the application using the following command:

npm start

Creating a File Explorer with NW.js-Planning, Designing, and Development

[25]

It launches the application and shows the layout:

For font sizes and related parameters such as padding, we use relative units
(em). It means that we set these values relative to the parent font size:

This trick allows us to efficiently scale components. For example, when using
the Responsive Web Design (RWD) approach, we may need to reduce the
font sizes and spacing proportionally for a smaller viewport width. When
using ems, we just change font size for a target component, and values of
subordinated rules will adapt.

Defining CSS variables
NW.js releases quite frequently, basically updating with every new version of Chromium.
That means we can safely use the latest CSS features. The one I'm most excited about is
called Custom Properties (), which were formerly
known as CSS variables.

Creating a File Explorer with NW.js-Planning, Designing, and Development

[26]

Actually, variables are one of the main reasons CSS preprocessors exist. With NW.js, we can
set variables natively in CSS, as follows:

After that, we can use the variable instead of real values across all the modules in the
document scope:

So if we decide now to change one of defined colors, we need to do it once, and any rules
relying on the variable receives the new value. Let's adopt this technology for our
application.

First, we need to create definitions for the module:

Here, we define variables representing colors and fixed sizes in the root scope. This new file
gets included to the CSS index file:

:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[27]

Then, we have to modify our components. First we take care of the top level application
layout:

Then we layout the main section that consists of two columns with dir and file lists:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[28]

We style the header:

And the footer:

We also need to set colors for the child components of the main section. So style the file list
component:

and directory list component:

We can run the application to observe that it looks the same. All the colors and sizes are
successfully extrapolated from the variables.

Sticking the title bar and header
The layout looks fine without any content, but what happens to the layout if it receives
content that is too long?

Creating a File Explorer with NW.js-Planning, Designing, and Development

[29]

In fact, we will have a header and footer shifting out of the view when scrolling. It doesn't
look user-friendly. Fortunately, we can change it easily using another fresh addition to CSS
called Sticky positioning ().

All we need to do is to modify slightly the title bar component:

and the footer:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[30]

In the preceding code, we declared that the title bar will stick to the top and footer to the
bottom. Run the application now, and you will note that both boxes are always visible,
regardless of scrolling:

Styling the title bar
Speaking of the view content, we are ready to populate the layout slots. We will start with
the title bar:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[31]

Basically, we want the current path to be displayed on the left and window controls on the
right. It can be achieved with Flexbox. It's a tiny layout that won't be reused, so it won't hurt
if we mix it in the component module:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[32]

Styling the directory list
The directory list will be used for navigation through the file system, so we will wrap it
with the structure:

To support it with styles, we go with the following code:

Note that we've just introduced a couple of variables. Let's add them in the definitions
module:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[33]

As we ruin the application we can observe the new contents in the directory list:

Styling a file list
The file list will be represented as a table, but we will build it out of an unordered list.
The file contains the following code:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[34]

In fact, here Grid Layout () would probably
suit better; however, at the time of writing, this CSS module was not yet available in NW.js.
So, we go on again with Flexbox:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[35]

I believe that everything is clear with the preceding code, except that you might not be
familiar with the . I want to change the color and mouse cursor on
hover for all the file list items, except the table header. So, I achieve it with a selector that
can be read like any that is not .

The following assignment goes to the definitions file:

As we run the application we can see the table with the file list:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[36]

Styling the footer
Eventually, we now reached the footer:

We arrange the application title to the left and language selector to the right. What do we
use to lay this out? Obviously, Flexbox:

It's a special case. We set items to align right in general, but have reset it for the
 item that snuggles against the left border driven by

:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[37]

While looking at the result, I think it would be nice to emphasize the functional meaning of
some UI elements with icons. I personally prefer the icon font of Material Design system
(). So, as described in the Developer Guide
(), we include the corresponding
Google Web Font to :

I would suggest that you dedicate a component that will represent an icon and fill it with
the rule set suggested by Material Design:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[38]

Now, we can add an icon anywhere in HTML, as simple as that:

Why not then make a folder icon accompanying items in the directory list?:

I believe that a globe icon will get along nicely with the language selector. So we modify the
HTML:

and we add a class in the CSS:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[39]

As we run the application we can see an icon rendered next to the language selector control:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[40]

If something went wrong after running the application, you can always call for Developer
Tools--just press F12:

Fulfilling the functional requirements
We've described the semantic structure of our application with HTML. We have defined
with CSS how our UI elements shall look. Now, we will teach our application to retrieve
and update the content as well as to respond to user events. Actually, we will allocate the
following tasks to several modules:

: This provides control on directory navigation
: This handles file operations

: This updates the file list with the data received from DirService,
handles user events (open file, delete file, and so on) using FileService

: This updates the directory list with the data received from
DirService and handles navigation events using DirService

Creating a File Explorer with NW.js-Planning, Designing, and Development

[41]

: This updates the current location with the path received from
DirService

: This handles user iteration with title bar buttons
: This handles user iteration with language selector

However, before we start coding, let's see what we have in our arsenal.

NW.js gets distributed together with the latest stable version of Node.js, which has a great
support for ES2015/ES2016 (). It means that we can use any of the
inherent new JavaScript features, but modules (). Node.js has its
own CommonJS-compliant module loading system. When we request a module by path, for
example, , the runtime searches for a corresponding file (,

, or) or a directory (). Then, Node.js evaluates the
module code and returns the exported type.

For example, we can create a module that exports a string:

and another one, which imports from the first module:

If we run it, we get the following:

$node bar.js
foo runs
foo's export

One should note here that regardless of how many times we require a module, it gets
executed just once, and every time, its exports are taken from the cache.

Starting with ES2015
As I have already mentioned, NW.js provides a complete support of JavaScript of ES2015
and ES2016 editions. To understand what it really means, we need a brief excursion into the
history of the language. The standardized specification for JavaScript was first released in
1997 (ECMA-262 1st Edition).

Creating a File Explorer with NW.js-Planning, Designing, and Development

[42]

Since then, the language has not really changed for 10 years. The 4th edition proposed in
2007 called for drastic changes. However, the working group (TC39) failed to agree on the
feature set. Some proposals have been deemed unsound for the Web, but some were
adopted in a new project code named Harmony. The project turned into the 6th edition of
the language specification and was released in 2015 under the official name ES2015. Now,
the committee is releasing a new specification every year.

New JavaScript is backward compatible with an earlier version. So, you can still write code
with the syntax of the ECMAScript 5th edition or even 3rd one, but why should we lose the
opportunity to work with the new advanced syntax and feature set? I think it would be
helpful if we now go through some new language aspects that will be used in the
application.

Scoping
In the old days, we used to always go with the statement for variable declarations.
ES2015 introduces two new declaration variables-- and . The statement
declares a variable in a function scope:

$ node es6.js
2
2

A variable declared with () spans the entire function scope, meaning that every
time we reference it by name, we target the same variable. Both and operate on
block scopes (statement, loops, and so on) as shown:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[43]

$ node es6.js
2
1

As you can see from the preceding example, we can declare a new variable in a block and it
will exist only within that block. The statement works the same, except it defines a
constant that cannot be reassigned after it was declared.

Classes
JavaScript implies a prototype-based, object-oriented programming style. It differs from
class-based OOP that is used in other popular programming languages, such as C++, C#,
Objective-C, Java, and PHP. This used to confuse newcomer developers. ES2015 offers a
syntactic sugar over the prototype, which looks pretty much like canonical classes:

$ node es6.js
R2D2 moving left
R2D2 moving right

Here, we declare a class that during instantiation assigns a value to a prototype
property, . A class extends and, therefore, inherits the prototype. In
subtype, we can invoke the parent constructor with the keyword.

Creating a File Explorer with NW.js-Planning, Designing, and Development

[44]

We also define a prototype method-- --and a static method-- .
The method has a so-called default function parameter. So, if we omit the direction
argument while calling move method, the parameter automatically sets to .

In ES2015, we can use a short syntax for the methods and do not need to repeat function
keywords with every declaration. It's also available for object literals:

The template literal
Another great addition to JavaScript is template literals. These are string literals that can be
multiline and can include interpolated expressions (). For example, we
can refactor our move method body, as follows:

Getters and setters
Getters and setters were added back in ES5.1. In ES2015, it was extended for computed
property names and goes hand in hand with a short method notation:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[45]

Arrow functions
A function declaration also obtained syntactic sugar. We write it now with a shorter syntax.
It's remarkable that a function defined this way (fat arrow function) automatically picks up
the surrounding context:

When using old function syntax, the callback function passed to an array's method, ,
would lose the context of the instance. Arrow functions, though, do not create their
own context and, therefore, outer context () gets in the closure.

In this particular example, as it often goes with array extras, the callback body is extremely
short. So, we can use an even shorter syntax:

Destructuring
In new JavaScript, we can extract specific data from arrays and objects. Let's say, we have
an array that could be built by an external function, and we want its first and second
elements. We can extract them as simple as this:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[46]

So here, we declare two new constants-- and --and assign the first and the second
array elements to them, respectively.

We can do the same with objects:

What did we do? We declared two constants-- and --that receive
values from correspondingly named object members.

What is more, we can even alias an object member while extracting:

In the last example, we delegated the values of object members-- and
--to newly created constants-- and .

Handling windowing actions
Coming back to the , we can start with the module that
listens to user click events on title bar buttons and performs the corresponding windowing
action. First, we need to mark the action nodes in HTML. The file contains
the following code:

Here, we specify our bounding box () and the close window
button (). Let's begin with the only button. The

 file contains the following code:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[47]

Here, we define a class that accepts an HTML element as a
parameter. This element represents the view bounding box, meaning that the instance of
this class will take care only of the passed in element and its descendants. During
construction, the class will search for the first element in the scope of the bounding box that
matches --the close window button of the title bar. In the

 method, we subscribe for clicks events on the Close button. When the button is
clicked, the method is called in the context of a instance, as
we bound it in (). The method closes the
window using the NW.js Window API
(), namely it requests a current
window object and calls its close method.

NW.js doesn't provide a module for the API, but exposes the variable in the global scope.

So, we have the first view module and can use it the main script:

Here, we import the class from the
module and make an instance of it. We pass the first document element matching selector

 to the class constructor.

Have you noticed that we used destructuring while importing from the module?
Particularly, we extracted the class into a respectively called
constant.

Creating a File Explorer with NW.js-Planning, Designing, and Development

[48]

Now, we can launch the application and observe, as clicking on the close button really
closes the window.

Going further, we take care of other title bar buttons. So, we adapt our file to
identify the buttons, nodes with , , and values for the

 attribute. Then, we collect in the constructor references to
the corresponding HTML elements:

Of course, we have to add new listeners in the module, respectively:

The handler for minimizing the window button looks pretty much the same as the one we
have already examined previously. It just uses the corresponding method of the NW.js
Window API:

With maximize and minimize (restore) window buttons, we need to take the fact that while
one button is visible the second one shall be hidden into account. This we achieve with the

 method:

Event handler for these buttons calls this method to the toggle buttons view:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[49]

Writing a service to navigate through
directories
Other modules, such as , , and , consume the
data from the filesystem, such as directory list, file list, and the current path. So we need to
create a service that will provide this data:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[50]

First of all, we import Node.js core module that provides us access to the filesystem. We
also extract functions-- and --from the module. We will need them for
manipulations in the file/directory path.

Then, we declare the class. On construction, it creates a property, which
takes either a passed-in value or the current working directory (). We add a
static method-- --to the class that reads the directory content on a given location.
The method retrieves the content of a directory, but we extend the
payload with file/directory stats
(). In case the stats cannot be
obtained, we replace its array element with . To avoid such gaps in the output array,
we will run the array method. Thus, on the exit point, we have a clean array of
filenames and file stats.

The method requests for the current directory content and filters
the list to leave only files in there.

The method filters, evidently, the list for directories only. Besides, it prepends
the list with a directory for upward navigation, but only if we are not in the system root.

Creating a File Explorer with NW.js-Planning, Designing, and Development

[51]

So, we can get both lists from the modules consuming them. When the location changes and
new directory and file lists get available, each of these modules have to update. To
implement it, we will use the observe pattern:

We export from events, core module the class
(). By extending it with , we make
the service an event emitter. It gives us the possibility to fire service events and to subscribe
on them:

So whenever the method is called to change the current location, it fires an event of
type . Given the consuming modules are subscribed, they respond to the event by
updating their views.

Creating a File Explorer with NW.js-Planning, Designing, and Development

[52]

Unit-testing a service
We've written a service and assume that it fulfills the functional requirements, but we do
not know it for sure, yet. To check it, we will create a unit-test.

We do not have any test environment so far. I would suggest going with the Jasmine test
framework (). We will create in our
subfolder a dedicated NW.js project, which will be used for the testing. This way, we get the
runtime environment for tests, identical to what we have in the application.

So we create the test project manifest:

It points at the Jasmine test runner page, the one we placed next to

Creating a File Explorer with NW.js-Planning, Designing, and Development

[53]

What does this runner do? It loads Jasmine, and with help of the npm module
(), it traverses the source directory
recursively for all the files matching pattern. All these files get added to the
test suite. Thus, it assumes that we keep our test specifications next to the target source
modules.

 is an external module, and we need to install the package and add it to the
development dependencies list:

npm i -D fs-jetpack

Jasmine implements a wide-spread, frontend development testing paradigm Behavior-
driven Development (BDD) that can be described with the following pattern:

As it is generally accepted in unit testing, a suite may have setup and teardown:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[54]

When testing a service that touches the filesystem or communicates across the network or
talks to databases, we have to be careful. A good unit test is independent from the
environment. So, to test our , we have to mock the filesystem. Let's test the

 method of the service class to see it in action:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[55]

Before running a test, we point the method to a virtual filesystem with the folder
 that contains the and files. After every test, we restore access to the

original filesystem. In the first test, we instantiate the service on the location and
read the content with the method. We assert the number of found files as
(as we defined in). In the second test, we take the first element of the list and
assert that it contains the intended filename and stats.

As we use an external npm package () for
mocking, we need to install it:

npm i -D mock-fs

As we came up with the first test suite, we can modify our project manifest file for a proper
test runner script. The file contains the following code:

Now, we can run the tests:

npm test

Creating a File Explorer with NW.js-Planning, Designing, and Development

[56]

NW.js will load and render the following screen:

Ideally, unit tests cover all the available functions/methods in the context. I believe that
from the preceding code you will get an idea of how to write the tests. However, you may
stumble over testing the interface; consider this example:

 works asynchronously. When we have asynchronous calls in the test body,
we shall explicitly inform Jasmin when the test is ready so that the framework could
proceed to the next one. That happens when we invoke the callback passed to its function.
In the preceding sample, we subscribe the event on the service and call
to make it fire the event. As soon as the event is captured, we invoke the callback.

Creating a File Explorer with NW.js-Planning, Designing, and Development

[57]

Writing view modules
Well, we have the service, so we can implement the view modules consuming it. However,
first we have to mark the bounding boxes for the view in the HTML:

The DirList module
What are our requirements for the view? It renders the list of directories in the
current path. When a user selects a directory from the list, it changes the current path.
Subsequently, it updates the list to match the content of the new location:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[58]

In the class constructor, we subscribe for the event. So, the view
gets updated every time the event fired. Method update performs view update. It populates
the bounding box with list items built of data received from . As it is done, it
calls the method to subscribe the handler for click events on newly
created items. As you may know, returns not an array, but a
non-live collection. It can be iterated in a loop, but I prefer the
array method. That is why I convert the collection into an array.

The handler method extracts target directory name from the
attribute and passes it to in order to change the current path.

Now, we have new modules, so we need to initialize them in :

Here, we require new acting classes, create an instance of service, and pass it to the
 constructor together with a view bounding box element. At the end of the

script, we call to make all available views update for the current
path.

Creating a File Explorer with NW.js-Planning, Designing, and Development

[59]

Now, we can run the application and observe as the directory list updates as we navigate
through the filesystem:

npm start

Unit-testing a view module
Seemingly, we are expected to write unit test, not just for services, but for other modules as
well. When testing a view we have to check whether it renders correctly in response to
specified events:

If you might remember in the test runner HTML, we had a hidden element with
 for id. Before every test, we populate that element with the HTML fragment the

view expects. So, we can point the view to the bounding box with the sandbox.

Creating a File Explorer with NW.js-Planning, Designing, and Development

[60]

After creating a view instance, we can call its methods, supplying them with an arbitrary
input data (here, a collection to update from). At the end of a test, we assert whether the
method produced the intended elements within the sandbox.

In the preceding test for simplicity's sake, I injected a fixture array straight to the update
method of the view. In general, it would be better to stub of
using the Sinon library (). So, we could also test the view behavior by
calling the notify method of --the same as it happens in the application.

The FileList module
The module handling the file list works pretty similar to the one we have just examined
previously:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[61]

In the preceding code, in the constructor, we again subscribed the event, and
when it was captured, we run the update method on a collection received from the

 method of . It renders the file table header first and then the
rows with file information. The passed-in collection contains raw file sizes and modification
times. So, we format these in a human-readable form. File size gets beautified with an
external module-- ()--and the
timestamp we shape up with the static method.

Certainly, we shall load and initialize the newly created module in the main script:

The title bar path module
So we have a directory and file lists responding to the navigation event, but the current path
in the title bar is still not affected. To fix it, we will make a small view class:

Creating a File Explorer with NW.js-Planning, Designing, and Development

[62]

You can note that the class simply subscribes for an update event and modifies the current
path accordingly to .

To get it live, we will add the following lines to the main script:

Summary
So we've made it to the milestone and have now a working version of the File Explorer
providing basic functionality. What have we achieved so far?

We went together though the traditional development routine: we planned, sketched, set
up, templated, styled, and programmed. On the way, we discussed the best practices of
writing maintainable and conflict-free CSS. We have discovered that NW.js enables the
features of the latest CSS and JavaScript specifications. So while refactoring our CSS code,
we exploited new aspects, such as custom properties and position sticky. We also had a tour
of the basics of ES2015, which helped us to build our JavaScript modules in a cleaner syntax
using classes, arrow functions, destructuring, and block scope declarations.

What is more, we explored a few of the goodies normally unavailable in the browser, such
as Node.js core and external modules, and the desktop environment integration API. Thus,
we were able to access the filesystem and implement windowing actions (close, minimize,
maximize, and restore). We made a service extending Node.js EventEmitter and
incorporated the event-based architecture to serve our needs.

Creating a File Explorer with NW.js-Planning, Designing, and Development

[63]

We didn't forget about unit-testing. We set up Jasmine testing runner and discussed the
essentials of BDD specifications. While writing the application unit tests, we examined an
approach to mock the filesystem and one to test Document Object Model (DOM)
manipulations.

Evidently, there's still much left for the second chapter, where we will augment the existing
functionality, dive deeper into NW.js API, and go through the preproduction steps. Yet, I
hope that you have already accrued a grasp on NW.js and HTML5 desktop development
basics. See? It doesn't differ much from traditional web development after all, just unlocks
new exciting possibilities.

22
Creating a File Explorer with

NW.js – Enhancement and
Delivery

Well, we have a working version of File Explorer that can be used to navigate the filesystem
and open files with the default associated program. Now we will extend it for additional file
operations, such as deleting and copy pasting. These options will keep in a dynamically
built context menu. We will also consider the capabilities of NW.js to transfer data between
diverse applications using the system clipboard. We will make the application respond to
command-line options. We will also provide support for multiple languages and locales.
We will protect the sources by compiling them into native code. We will consider packaging
and distribution. At the end, we will set up a simple release server and make the File
Explorer auto-update.

Internationalization and localization
Internationalization, often abbreviated as i18n, implies a particular software design
capable of adapting to the requirements of target local markets. In other words, if we want
to distribute our application to markets other than the USA, we need to take care of
translations, formatting of datetime, numbers, addresses, and such.

Creating a File Explorer with NW.js – Enhancement and Delivery

[65]

Date format by country
Internationalization is a cross-cutting concern. When you are changing the locale, it usually
affects multiple modules. So, I suggest going with the observer pattern that we already
examined while working on :

As you see, we can change the property by setting a new value to the
property. As soon as we call the method, all the subscribed modules immediately
respond.

However, is a public property and therefore we have no control over its access and
mutation. We can fix it using overloading:

Creating a File Explorer with NW.js – Enhancement and Delivery

[66]

Now, if we access the property of the instance, it gets delivered by the getter
(). When setting it a value, it goes through the setter (). Thus, we
can add extra functionalities, such as validation and logging on property access and
mutation.

Remember that we have a combo box for selecting the language in the HTML. Why not give
it a view?

:

In the preceding code, we listen for change events on the combo box.

When the event occurs, we change the property with the passed-in instance
and call to inform the subscribers:

Creating a File Explorer with NW.js – Enhancement and Delivery

[67]

Well, we can change the locale and trigger the event. What about consuming modules?
In the view, we have the static method that formats the passed in

 for printing. We can make it formatted in accordance with the currently
chosen :

:

Creating a File Explorer with NW.js – Enhancement and Delivery

[68]

In the constructor, we subscribe to the update event and update the file list every time
the locale changes. The static method converts passed the string into a
object and uses the method to format the datetime
according to a given locale. This method belongs to the so called ECMAScript
Internationalization API
(

). This API describes methods of built-in objects-- , , and
--designed to format and compare localized data. However, what it really does is to

format a instance with for the English (United States) locale (
), and it returns the date, as follows:

However, if we feed German locale () to the method, we get quite a different result:

To put it into action, we set an identifier to the combo box. The file contains
the following code:

Of course, we have to create an instance of the service and pass it in
 and :

Creating a File Explorer with NW.js – Enhancement and Delivery

[69]

Now we shall start the application. Yeah! As we change the language in the combo box, the
file modification dates are adjusted accordingly:

Multilingual support
Localization dates and numbers is a good thing, but it will be more exciting to provide
translation to multiple languages. We have a number of terms across the application,
namely, the column titles of the file list and tooltips (via the attribute) on windowing
action buttons. What we need is a dictionary. Normally, it implies sets of token translation
pairs mapped to language codes or locales. Thus, when you request from the translation
service a term, it can correlate to a matching translation according to the currently used
language/locale.

Creating a File Explorer with NW.js – Enhancement and Delivery

[70]

Here, I have suggested making the dictionary a static module that can be loaded with the
required function:

So, we have two locales with translations per term. We will inject the dictionary as a
dependency into our service:

Creating a File Explorer with NW.js – Enhancement and Delivery

[71]

We also added a new method, translate, that accepts two parameters: and
translation. The first parameter can be one of the keys from the dictionary, such as .
The second one is guarding value for the case when the requested token does not yet exist
in the dictionary. Thus, we still get a meaningful text, at least in English.

Let's look at how we can use this new method:

We change the hardcoded column titles in the view with calls for the
method of the instance, which means that every time the view updates, it receives the
actual translations. We shall not forget about the view where we have
windowing action buttons:

Creating a File Explorer with NW.js – Enhancement and Delivery

[72]

Here we add the method, which updates button-title attributes with the actual
translations. We subscribe for the update event to call the method every time a user
changes the :

Creating a File Explorer with NW.js – Enhancement and Delivery

[73]

Context menu
Well, with our application, we can already navigate through the filesystem and open files,
yet one might expect more of a File Explorer. We can add some file-related actions, such as
delete and copy/paste. Usually, these tasks are available via the context menu, which gives
us a good opportunity to examine how to make it with . With the environment
integration API, we can create an instance of system menu
(). Then, we compose objects
representing menu items and attach them to the menu instance
(). This can be shown in an
arbitrary position:

Yet, our task is more specific. We have to display the menu on the right-click in the position
of the cursor, that is, we achieve it by subscribing a handler to DOM event:

Now, whenever we right-click within the application window, the menu shows up. It's not
exactly what we want, is it? We need it only when the cursor resides within a particular
region, for instance, when it hovers a file name. This means that we have to test whether the
target element matches our conditions:

Creating a File Explorer with NW.js – Enhancement and Delivery

[74]

Here, we ignore the event until the cursor hovers over any cell of the file table row, given
that every row is a list item generated by the view and therefore provided with a
value for a data file attribute.

This passage pretty much explains how to build a system menu and how to attach it to the
file list. However, before starting on a module capable of creating a menu, we need a service
to handle file operations:

Creating a File Explorer with NW.js – Enhancement and Delivery

[75]

What's going on here? receives an instance of as a constructor
argument. It uses the instance to obtain the full path to a file by name
(). It also exploits the method of the instance to
request all the views subscribed to to update. The method
calls the corresponding method of to show the file in the parent folder with the
system file manager. As you can recon, the method deletes the file. As for
copy/paste, we do the following trick. When the user clicks on copy, we store the target file
path in the property. So, when the user clicks on paste the next time, we can
use it to copy that file to the supposedly changed current location. The method
evidently opens the file with the default associated program. That is what we do in the

 view directly. Actually, this action belongs to . So, we adjust the
view to use the service:

Creating a File Explorer with NW.js – Enhancement and Delivery

[76]

Now, we have a module to handle the context menu for a selected file. The module will
subscribe for the DOM event and build a menu when the user right-clicks on
a file. This menu will contain Show Item in the Folder, Copy, Paste, and Delete. Copy and
Paste are separated from other items with delimiters, and Paste will be disabled until we
store a file with Copy:

Creating a File Explorer with NW.js – Enhancement and Delivery

[77]

Creating a File Explorer with NW.js – Enhancement and Delivery

[78]

So, in the constructor, we receive instances of and
. During the construction, we also call the method, which subscribes

for the DOM event, creates the menu, and shows it in the position of the
mouse cursor. The event gets ignored unless the cursor hovers over a file or resides in the
empty area of the file list component. When the user right-clicks on the file list, the menu
still appears, but with all items disabled except Paste (in case a file was copied before).
Method render to create an instance of the menu and populates it with
created by the method. The method creates an array representing menu items.
Elements of the array are object literals. The property accepts translation for item
captions. The property defines the state of an item depending on our cases
(whether we hold the copied file or not). Finally, the property expects the handler for
the click event.

Now we need to enable our new components in the main module:

Creating a File Explorer with NW.js – Enhancement and Delivery

[79]

Now, let's run the application, right-click on a file, and voila! We have the context menu
and new file actions:

System clipboard
Usually, the copy/paste functionality involves system clipboard. provides an API to
control it (). Unfortunately, it's
quite limited; we cannot transfer an arbitrary file between applications, which you may
expect of a file manager. Yet, some things are still available to us.

Transferring text
In order to examine text transferring with the clipboard, we modify the method copy of

:

Creating a File Explorer with NW.js – Enhancement and Delivery

[80]

What does it do? As soon as we obtain the file full path, we create an instance of
 and save the file path there as text. So now, after copying a file within the

File Explorer, we can switch to an external program (for example, a text editor) and paste
the copied path from the clipboard:

Transferring graphics
It doesn't look very handy, does it? It would be more interesting if we could copy/paste a
file. Unfortunately, doesn't give us many options when it comes to file exchange.
However, we can transfer PNG and JPEG images between the application and
external programs:

Creating a File Explorer with NW.js – Enhancement and Delivery

[81]

We extended our with the private method. It reads a given file,
converts its contents in Base64 and passes the resulting code in a clipboard instance. In
addition, it creates HTML with an image tag with the Base64-encoded image in the data
Uniform Resource Identifier (URI). Now, after copying an image (PNG or JPEG) in File
Explorer, we can paste it in an external program, such as the graphical editor or text
processor.

Receiving text and graphics
We've learned how to pass text and graphics from our application to external
programs, but how can we receive data from outside? As you can guess, it is accessible
through the method of . Text can be retrieved as follows:

Creating a File Explorer with NW.js – Enhancement and Delivery

[82]

When the graphic is put on the clipboard, we can get it with NW.js only as Base64-encoded
content or as HTML. To see it in practice, we add a few methods to :

The method checks whether the clipboard keeps any graphics. The
 method takes graphical content from the clipboard as a Base64-

encoded PNG; it converts the content into binary code, writes it into a file, and requests
 subscribers to update it.

To make use of these methods, we need to edit the view:

Creating a File Explorer with NW.js – Enhancement and Delivery

[83]

We add a new item, , to the menu, which is enabled only
when there are some graphics in the clipboard.

Menu in the system tray
All three platforms available for our application have a so-called system notification area,
which is also known as the system tray. That's a part of the user interface (in the bottom-
right corner on Windows and top-right corner on other platforms) where you can find the
application icon even when it's not present on the desktop. Using the API
(), we can provide our application
with an icon and drop-down menu in the tray, but we do not have any icon yet. So, I have
created the image with the text and saved it in the application root in the size
of 32x32px. It is supported on Linux, Windows, and macOS. However, in Linux, we can go
with a better resolution, so I have placed the 48x48px version next to it.

Our application in the tray will be represented by :

Creating a File Explorer with NW.js – Enhancement and Delivery

[84]

What does it do? The class takes the tray's title as a constructor parameter and calls the
 and render methods during instantiation. The first one subscribes for the

window's event and ensures that the tray is removed when we close the application.
Method render creates the instance. With the constructor argument, we pass the
configuration object with the title, which is a relative path to the icon. We assign it with

 icon for Linux and for other platforms. By default,
macOS tries adapting the image to the menu theme, which requires an icon to consist of
clear colors on a transparent background. If your icon doesn't fit these restrictions, you
would rather add it into configuration object property , which is set as

.

Creating a File Explorer with NW.js – Enhancement and Delivery

[85]

When launching our File Explorer in Ubuntu 16.x, it doesn't appear in the
system tray due to the whitelisting policy. You can fix this by running

 in the Terminal.

 accepts the instance. So, we populate the menu the same way as we did
for the context menu. Now we just initialize the view in the main module and run the
application:

If we run the application now we can see the app icon and the menu in the system tray:

Yes, the only menu item exit looks somehow lonely.

Creating a File Explorer with NW.js – Enhancement and Delivery

[86]

Let's extend the view:

Creating a File Explorer with NW.js – Enhancement and Delivery

[87]

Creating a File Explorer with NW.js – Enhancement and Delivery

[88]

Now, the method receives a Boolean as an argument defining whether the
application window is in the initial mode; that flag gets passed to the new
method that produces an array of menu items meta. If the flag is true, all the menu items are
enabled, except restore. What makes sense is to restore the switches window to the initial
mode after minimizing or maximizing. Seemingly, when the flag is , the
and items are disabled, but how can we know the current mode of the window?
While constructing, we subscribe to window events minimize, maximize, and restore. When
an event happens, we call with the corresponding flag. Since we can now change
window mode from both the and views, the method of

 is not a reliable source of window mode anymore. Instead, we rather
refactor the module to rely on window events like we did in the view:

Creating a File Explorer with NW.js – Enhancement and Delivery

[89]

Creating a File Explorer with NW.js – Enhancement and Delivery

[90]

This time when we run the application we can find in the system tray application menu
with windowing actions:

Command-line options
Other file managers usually accept command-line options. For example, you can specify a
folder when launching Windows Explorer. It also responds to various switches. Let's say
that you can give it switch , and Explorer will open the folder in expanded mode.

Creating a File Explorer with NW.js – Enhancement and Delivery

[91]

 reveals command-line options as an array of strings in . So, we can
change the code of the initialization in the main module:

Now, we can open a specified folder in the File Explorer straight from the command line:

npm start ~/Sandbox

In UNIX-based systems, the tilde means user home directory. The equivalent in Windows
will be as follows:

npm start %USERPROFILE%Sandbox

What else can we do? Just for a showcase, I suggest implementing the and
 options that switch the application window mode on startup, respectively:

It doesn't make any sense to parse array manually when we can use an
external module minimist (). It exports a
function that collects all the arguments that are not options or associated with options into
the (underscore) property. We expect the only argument of that type, which is startup
directory. It also sets the and properties to true when they are
provided on the command line.

One should note that NPM doesn't delegate options to the running script, so we shall call
the executable directly:

nw . ~/Sandbox/ --minimize

or

nw . ~/Sandbox/ --maximize

Creating a File Explorer with NW.js – Enhancement and Delivery

[92]

Native look and feel
Nowadays, one can find plenty of native desktop applications with semi-transparent
background or with round corners. Can we achieve such fancy look with ? Sure we
can! First, we shall edit our application manifest file:

By setting the frame field to , we instruct to not show the window frame, but
its contents. Fortunately, we have already implemented custom windowing controls as the
default ones will not be available anymore. With a transparent field, we remove the opacity
of the application window. To see it in action, we edit the CSS definitions module:

Creating a File Explorer with NW.js – Enhancement and Delivery

[93]

With RGBA color function, we set the opacity of the title bar to 70% and other background
colors to 90%. We also introduce a new variable, , which we will use in
the and components to make round corners on the top and in the
bottom:

Now we can launch the application and enjoy our renewed fancy look.

On Linux, we need to use the
 command-line option to trigger transparency.

Source code protection
Unlike in native applications, our source code isn't compiled and is therefore open to
everybody. If you have any commercial use of this fact in mind, it is unlikely to suit you.
The least you can do is to obfuscate the source code, for example, using Jscrambler
(). On the other hand, we can compile our sources into native
code and load it with instead of JavaScript. For that, we need to separate JavaScript
from the application bundle. Let's create the folder and move everything except
there. The folder will be moved into a newly created directory, :

.
├── app
│

└── assets
│ └── css

│ ├── Base
│ └──

Creating a File Explorer with NW.js – Enhancement and Delivery

[94]

Component
└── src
 └──

js
 ├── Data
 ├──

Service
 └── View

Our JavaScript modules are now out of the project scope, and we cannot reach them when
required. However, these are still Node.js modules (

) that confront CommonJS module definition standards. Therefore, we can merge them,
with a bundler tool, into a single file that we later compile into native code. I suggest going
with Webpack (), the seemingly most popular bundler
nowadays. So, we place it in the root directory webpack configuration file with the
following contents:

With this, we instruct Webpack to transpile all the required modules, starting with
, into a single file. However, Webpack, unlike

, expects the required dependencies relative to the hosting file (not project root); so,
we have to remove from the file paths in the main module:

Creating a File Explorer with NW.js – Enhancement and Delivery

[95]

For both transpiling CommonJS modules and compiling the derived file in the native code,
we need a few tasks in the script field of the manifest:

With the first task, we make webpack build our JavaScript sources into a single file. The
second one compiles it using the compiler. The last one does both at once.

In the HTML file, we replace the code calling the main module with the following lines:

Now we can run the application and observe that the implemented functionality still
confronts our requirements.

Packaging
Well, we have completed our application and that is the time to think about distribution. As
you understand, asking our users to install and type from the
command line will not be friendly. Users will expect a package that can be started as simply
as any other software. So, we have to bundle our application along with for every
target platform. Here, comes in handy
().

So, we install the tool and add a task to the manifest:

Creating a File Explorer with NW.js – Enhancement and Delivery

[96]

Here, we specified three target platforms () at once and thus,
after running this task (), we get platform-specific subfolders in the
directory, containing other executable things named after our application:

 accepts diverse options. For example, we can request it to output the
packages as ZIP archives:

nwb nwbuild -v 0.21.3-sdk ./app -o ./dist --output-format=ZIP

Alternatively, we can make it run the package after the build process with the given
options:

nwb nwbuild -v 0.21.3-sdk ./app -o ./dist -r -- --enable-transparent-
visuals --disable-gpu

Autoupdate
In the era of continuous deployment, new releases are issued pretty often. As developers,
we have to ensure that users receive the updates transparently, without going through the
download/install routine. With the traditional web application, it's taken for granted. Users
hit the page and the latest version gets loaded. With desktop applications, we need to
deliver the update. Unfortunately, doesn't provide any built-in facilities to handle
autoupdates, but we can trick it; let's see how.

Creating a File Explorer with NW.js – Enhancement and Delivery

[97]

First of all, we need a simple release server. Let's give it a folder (for example,) and
create the manifest file there:

This file contains a custom field, describing the available application releases.
This simplified implementation accepts only the latest release per platform. The release
version must be set in the manifest version field. Every entry of package objects contains a
downloadable URL and the package size in bytes.

To serve HTTP requests for this manifest and packages in the folder, we will use
the HTTP server (). So, we install the
package and start the HTTP server:

npm i -S http-server
npm start

Now, we will jump back to our client and modify the application manifest file:

Creating a File Explorer with NW.js – Enhancement and Delivery

[98]

Here, we add a custom field, , with a URL to the server manifest. After we
start the server, the manifest will be available at

. We instruct to pack
application bundles with ZIP and place them in . Eventually, we set
the hook; so, when bumping the package version (for example,

) NPM will automatically build and send a release package to the server,
every time.

From the client, we can read the server manifest and compare it with the application. If the
server has a newer version, we download the release package matching our platform and
unpack it in a temporary directory. What we need to do now is just replace the running
application version with the downloaded one. However, the folder is locked until the app is
running, so we close the running application and start the downloaded one (as a detached
process). It backs up the old version and copies the downloaded package to the initial
location. All that can be easily done using
(), so we install the

 package and create a new service to handle the autoupdate flow:

Creating a File Explorer with NW.js – Enhancement and Delivery

[99]

Creating a File Explorer with NW.js – Enhancement and Delivery

[100]

Here, we applied the async/await syntax of ES2016. By prefixing the function with ,
we state that it is asynchronous. After that, we can use await in front of any Promise
() to receive its resolved value. If Promise rejects it, the
exception will be caught in the try/catch statement.
What exactly does the code do? As we agreed, it compares local and remote manifest
versions.

If release server has the newer version, it informs the user using the JavaScript confirm
function. If the user is positive on upgrading, it downloads the latest release and unpacks it.
While downloading and unpacking, the updater object emits the corresponding messages;
so, we can subscribe and represent the progress. When ready, the service restarts the
application for swapping; so, now it replaces the outdated version with the downloaded
one and restarts again. On the way, the service reports to the user by writing in the passed-
in HTML element (el). By the design it expects the element representing the path container
in the title bar.

So, we can now enable the service in the main module:

Well, how do we test it? We jump to client folder and build a distribution package:

npm run package

Supposedly, it lands in server/releases. We unpack to the arbitrary location, for example,
:

unzip ../server/releases/file-explorer-linux-x64.zip -d ~/sandbox/

Here, we will find the executable (for Linux, it will be) and run it. The File
Explorer will work as usual because the release server doesn't have a newer version, so we
go back to the client folder and create one:

npm version patch

Creating a File Explorer with NW.js – Enhancement and Delivery

[101]

Now we switch to the server folder and edit the version of the manifest to match the just-
generated one (1.0.1).

Then, we restart the bundled app (for example,) and observe
the prompt:

Creating a File Explorer with NW.js – Enhancement and Delivery

[102]

After clicking on OK, we see the progress on downloading and installing in the title bar:

Then, the application restarts and reports swapping. When done, it restarts again, now
updated.

Summary
In the beginning of this chapter, our File Explorer could only navigate the filesystem and
open files. We extended it to show a file in the folder, and to copy/paste and delete files. We
exploited the API to provide the files with the dynamically-built context menu. We
learned to exchange text and images between applications using system clipboard. We
made our File Explorer support diverse command-line options. We provided support for
internalization and localization, and examined the protection of the sources through
compilation in the native code. We went through the packaging process and prepared for
distribution. Finally, we set up a release server and extended the File Explorer with a
service for autoupdating.

33
Creating a Chat System with

Electron and React – Planning,
Designing, and Development

In the previous chapters, we worked with NW.js. It's a great framework, but not the only
one on the market. Its counterpart Electron isn't inferior to NW.js in feature set and has an
even larger community. To make the right choice of what fits best, I assume that one has to
try both frameworks. So, our next example application will be a simple chat system and we
will do it with Electron. We made the file explorer in plain JavaScript. We had to take care
of abstractions consistency, data binding, templating, and such. In fact, we can delegate
these tasks to a JavaScript framework. At the time of writing, the three solutions--React,
Vue, and Angular--head the short list, where React seems like the most trending. I find it as
a best fit for our next application. So, we will look into the essentials of React. We will set up
Electron and webpack for our React-based application. We will not write all the CSS styles
manually this time, but will use PhotonKit markup components. Finally, we will build the
chat static prototype using React components and get ready to make it functional.

Application blueprint
In order to describe our application requirements, the same as previously, we start with
user stories:

As a user, I can introduce myself to the chat
As a user, I can see real time the list of chat participants
As a user, I can enter and submit a message
As a user, I can see messages of chat participants as they are coming

Creating a Chat System with Electron and React – Planning, Designing, and Development

[104]

If putting it onto wireframes, the first screen will be a simple prompt for a username:

The second screen contains a sidebar with participants and the main area with the
conversation thread and a form to submit a message:

Creating a Chat System with Electron and React – Planning, Designing, and Development

[105]

The second screen shares header and footer with the first one, but the main section consists
of a participant list (on the left) and chat pane (on the right). The chat pane comprises
incoming messages and submission form.

Electron
We have already become acquainted with NW.js. As you likely know, there is an alternative
to it called Electron (). By and large, both provide comparable
feature sets (). On the other hand, we can observe that Electron has
a larger and much more active community ().

Electron is also known to be the GUI framework behind notable open source projects, such
as Visual Studio Code () and Atom IDE
().

From a developer perspective, the first difference one faces is that Electron's entry point is a
JavaScript, unlike HTML in NW.js. As we launch an Electron application, the framework
runs first the specified script (main process). The script creates the application window.
Electron provides API split in modules. Some of them are available only for the main
process, some for renderer processes (any scripts requested from web pages originated by
the main script).

Let's put this into practice. First of all, we will create the manifest file:

On the whole, this manifest doesn't differ much from the one we created in previous
chapters for NW.js. Yet, we do not need the field here and field points at the
main process script.

Creating a Chat System with Electron and React – Planning, Designing, and Development

[106]

As for dependencies, we obviously need , and in addition, we will use the
 package, which activates hotkeys F12 and F5 for DevTools and reload,

respectively (). We also include
Electron's DevTools Extension, called Devtron ().

Now, we can edit the main process script:

Here, we import and from the module. The first one allows
us to subscribe to application lifecycle events. With the second, we create and control the
browser window. We also obtain references to NPM modules and . The first helps
to create platform-agnostic paths and the second helps in building a valid URL. In the last
line, we declare a global reference for the browser window instance. Next, we will add a
function that creates the browser window:

Actually, the function just creates a window instance and loads in it. When the
window is closed, the reference to the window instance gets destroyed. Further, we
subscribe for application events:

Creating a Chat System with Electron and React – Planning, Designing, and Development

[107]

The application event is fired when Electron finishes initialization; then we create
the browser window.

The event is emitted when all the windows are closed. For any
platform but macOS, we quit the application. OS X applications usually stay active until the
user quit explicitly.

The event gets triggered only on macOS. In particular, it happens when we click
on the application's dock or taskbar icon. If no window exists at that moment, we create a
new one.

Finally, we call to activate the debug hotkeys:

If we launch Electron now, it will try loading , which we have to create first:

Creating a Chat System with Electron and React – Planning, Designing, and Development

[108]

Nothing exciting is happening here. We just declared several placeholders and loaded a
renderer process script:

In the renderer script, we read into the constant. We define a
dictionary object to map the keys to meaningful platform names. We
add a helper function, , which assigns a given text to the element matching the given
ID. Using this function, we populate the placeholders of the HTML.

At this point, we are expected to have the following file structure:

Creating a Chat System with Electron and React – Planning, Designing, and Development

[109]

Now, we install dependencies () and run the () example. We will see the
following window:

React
React is gaining momentum. It is the most trending technology, according to the 2016 Stack
Overflow developer survey (

). It is interesting to note that React is not even a framework. It's a JavaScript library for
building user interfaces--very clean, concise, and powerful. The library implements the
component-driven architecture. So, we create components (reusable, composable, and
stateful units of UI) and then use them like Lego blocks to construct the intended UI. React
treats the derived structure as an in-memory DOM representation (virtual DOM). As we
bind it to the real DOM, React keeps both in sync, meaning that whenever any of its
components change their states, React immediately reflects the view changes in the DOM.

Besides that, we can convert virtual DOM in the HTML string
() on the server side and send it with an HTTP
response. The client side will automatically bind to the already existing
HTML. Thus, we speed up page loading and allow search engines to crawl
the content.

Creating a Chat System with Electron and React – Planning, Designing, and Development

[110]

In a nutshell, the component is a function that takes in given properties and returns an
element, where an element is a plain object representing a component or a DOM node.
Alternatively, one can use a class extending , whose method
produces the element:

To create an Element, one can go with the API. Yet, nowadays, as a rule, it's not used
directly, but via syntactic sugar known as JSX. JSX extends JavaScript with a new type that
looks like an HTML template:

Basically, we write HTML straight in JavaScript and JavaScript in HTML. JSX can be
translated to plain JavaScript using the Babel compiler with preset
().

Most of the modern IDEs support JSX syntax from the box.

Creating a Chat System with Electron and React – Planning, Designing, and Development

[111]

To have a better understanding, we fiddle a bit with React. A function-based component
might look like this:

So, we declare a component that generates an element representing a header with a
heading populated from the property. We can also go with a class. Thus, we can
encapsulate component-related methods in the class scope:

This component creates a button and provides it with a minimalistic functionality (when the
button is clicked, we get an alert box with the Clicked! text).

Now, we can attach our components to the DOM, as follows:

Creating a Chat System with Electron and React – Planning, Designing, and Development

[112]

As you can note, components imply a unidirectional flow. You can pass properties from
parent to child, but not otherwise. Properties are immutable. When we need to
communicate from a child, we lift the state up:

In the method of the component, we have an array of names. Using the
array prototype method, we iterate through the name list. The method results in an array of
elements, which JSX accepts gladly. While declaring , we pass in the current and

 handler bound to the list instance scope. The component renders
 and subscribes the passed-in handler to click events. Therefore, events of a child

component are handled by the parent.

Creating a Chat System with Electron and React – Planning, Designing, and Development

[113]

Electron meets React
Now, we have an idea about both Electron and React. What about on how to use them
together? To get a grasp on it, we will start not with our real application, but with a simple,
similar example. It will include a few components and a form. The application will reflect
user input in the window title. I suggest cloning our last example. We can reuse the
manifest and main process script. However we have to bring the following changes to the
manifest:

In the preceding example, we add the and modules. The first is the
library core and the second serves as a glue between React and DOM. The
module brings us type-checking abilities (till React v.15.5, which was a built-in object of the
library). We add as a dev-dependency in addition to electron-specific modules.
Webpack is a module bundler that takes in varying types (sources, images, markup, and
CSS) of assets and produces a bundle(s) that can be loaded by the client. We will use
webpack to bundle our React/JSX-based application.

Creating a Chat System with Electron and React – Planning, Designing, and Development

[114]

However, webpack doesn't transpile JSX its own; it uses the Babel compiler ().
We also include the module, which bridges between webpack and Babel.
The module is a so-called Babel preset (a set of plugins) that allows
Babel to deal with JSX. With the preset, we make Babel compile
our ES2017-compliant code into ES2016, which is greatly supported by Electron. What is
more, I included the Babel plugin to
unlock features of the proposal called ES Class Fields & Static Properties
(). So, we will be able to define
class properties directly without the help of a constructor, which did not yet land to the
specification.

There are two extra commands in the scripts section. The command bundles
JavaScript for the client. The command sets webpack in a watch mode. So, whenever
we change any of the sources, it automatically bundles the application.

Before using webpack, we will need to configure it:

Creating a Chat System with Electron and React – Planning, Designing, and Development

[115]

We set as the entry point. So, webpack will read it first and resolve any
met dependencies recursively. The compiled bundle can be found then in

. So far, we have set the only rule for webpack: every met or
 file with the exception of the directory goes to Babel, which is

configured for the and presets (and the
plugin, to be precise). So, if we run now, the webpack will try compiling

 into , which we call from the HTML.

The code for the file is as follows:

The main renderer script may look as follows:

Creating a Chat System with Electron and React – Planning, Designing, and Development

[116]

Here, we import two components-- and --and use them in a composite one,
which we bind to the DOM custom element, .

The following is the first component we describe with a function:

The function in the preceding code takes one property-- (we passed it in the parent
component,)--and renders it as a heading.

Note that we use to validate the property value. If we happen to set a
value other than string to , a warning will be shown in the JavaScript console.

The following second component is presented with a class:

Creating a Chat System with Electron and React – Planning, Designing, and Development

[117]

This component renders an input field. Whatever one is typing in the field gets reflected in
the window title. Here, I have set a goal to show a new concept: children
components/nodes.

Do you remember we declared with children nodes in the parent component? The
code for the element is as follows:

Now, we receive these list items in and render them within .

Besides this, we subscribe a handler for change events on the input
element. As it changes, we obtain a current window instance from the remote function of
electron () and replace its title with input contents.

To see what we've got, we install dependencies using , build the project using
, and launch the application using :

Creating a Chat System with Electron and React – Planning, Designing, and Development

[118]

Enabling DevTools extensions
I believe that you had no problems when running the last example. Yet, when we need to
trace an issue in a React application, it can be tricky, as DevTools shows us what is
happening to the real DOM; however, we want to know about the virtual one also.
Fortunately, Facebook offers an extension for DevTools called React Developer Tools
().

We will install this extension with electron-devtools-installer (
). This tool supports a number of DevTools

extensions including a few React-related: React Developer Tools
(), Redux DevTools Extension (), React Perf
(). We will pick only the first one for now.

First we install the package:

npm i -D electron-devtools-installer

Then we add to the main process script the following line:

We imported from the package function and
 constant, which represents React Developer Tools . Now we

can call the function as soon as application is ready. On this event we already invoke our
 function. So we can extend the function rather than subscribe again for the

event:

Now, when I launch the application and open (F12), I can see a new tab, ,
which brings me to the corresponding panel. Now, it is possible to navigate through the
React component tree, select its nodes, and inspect the corresponding components, edit its
props, and state:

Creating a Chat System with Electron and React – Planning, Designing, and Development

[119]

Static prototype
At this point, we are quite ready to start with the chat application. Yet, it will be easier to
grasp if we create first a static version and then extend it with the intended functionality.
Nowadays, developers often do not write CSS from scratch, but reuse components of
HTML/CSS frameworks such as Bootstrap. There is a framework dedicated for the Electron
application--Photonkit (). This framework provides us with building
blocks such as layouts, panes, sidebar, lists, buttons, forms, table, and buttons. A UI
constructed of these blocks looks in the style of macOS, automatically adapted for Electron
and responsive to its viewport size. Ideally, I would go with ready PhotonKit components
built with React (), but we will do it with HTML. I
want to show you how you can incorporate an arbitrary third-party CSS framework on the
example of PhotonKit.

First, we install it with NPM:

npm i -S photonkit

Creating a Chat System with Electron and React – Planning, Designing, and Development

[120]

What we really need from the package is CSS and fonts files from the subfolder. The
only truly reliable way to access the package content from the application is the require
function (). It's clear how to request JavaScript or JSON files, but
what about other types, for example, CSS? With webpack, we can bundle theoretically any
content. We just need to specify the corresponding loaders in the webpack configuration
file:

We extended webpack configuration with a new rule that matches any files with extension
. Webpack will process such files with and . The first one

reads the requested file and adds it to the DOM by injecting a style block. The second brings
to the DOM any assets requested with and .

After enabling this rule, we can load Photon styles directly in a JavaScript module:

However, the custom fonts used in this CSS still won't be available. We can fix it by further
extending the webpack configuration:

Creating a Chat System with Electron and React – Planning, Designing, and Development

[121]

This rule aims for font files and exploits , which takes the requested file from
the package, stores it locally, and returns the newly created local path.

So, given that the styles and fonts are handled by webpack, we can proceed with
components. We will have two components representing the window header and footer.
For the main section, we will use when the user has not yet provided any name,
and afterward. The second one is a layout for and

 components. We will also have a root component, , that connects all
other components with the future chat services. Actually, this one works not like a
presentational component, but as a container (

). So, we are going to keep it separate from others.

As we are now done with the architecture, we can write down our start script:

Here, we add to the DOM the CSS of PhotonKit library (
) and bind the container to the element.

The following container goes next:

Creating a Chat System with Electron and React – Planning, Designing, and Development

[122]

At this stage, we just lay out other components using PhotonKit application layout styles
(and). As we have agreed, we render either or

 between header and footer, depending on the value of the local constant, .

By the way, both the header and footer we build from Photon mark-up component
() are called bar. Besides a neat styling, it also enables
the possibility to drag the application window around your desktop:

Creating a Chat System with Electron and React – Planning, Designing, and Development

[123]

As you can figure out from Photon CSS classes in the component (and
), we render a bar on the top of the window. The bar accepts action

buttons (). At the moment, the only button available is meant to close
the window.

In the component, we render a bar positioned at the bottom ():

It includes the project name and version from the manifest.

For the welcome screen, we a have a simple form with the input field (
) for the name and a submit button ():

Creating a Chat System with Electron and React – Planning, Designing, and Development

[124]

The component places on the left and on the
right. It's pretty much everything what it does at the moment:

In the component, we use a layout pane of a type sidebar (
):

It has a list of chat participants. Every name we prefix with the Entype icon is provided by
Photon.

Creating a Chat System with Electron and React – Planning, Designing, and Development

[125]

The last component-- --renders chat messages in a list () and
the submission form:

This is the first time we need to have a few custom styles:

Creating a Chat System with Electron and React – Planning, Designing, and Development

[126]

Here, we make the form) stick to the bottom. It has a fixed height (), and
all the available space upward takes the message list (). In
addition, we align message time information () to the right and take it
out of the flow ().

This CSS can be loaded in HTML:

We make sure that all the dependencies are installed (), then build ()
and launch the application (). As it's done, we can see the following intended UI:

Creating a Chat System with Electron and React – Planning, Designing, and Development

[127]

Summary
Despite the fact that we do not have a functional application yet and just a static prototype,
we have come a long way. We talked about the Electron GUI framework. We compared it to
NW.js and went through its peculiarities. We made a simplified Electron demo application
consisting of a main process script, renderer one, and HTML. We had an introduction into
React basics. We focused on components and elements, JSX and virtual DOM, props, and
state. We configured webpack to compile our ES.Next-compliant JSX into a JavaScript-
acceptable one by Electron. To consolidate our knowledge, we made a small demo React
application powered by Electron. What is more, we examined how to enable a DevTools
extension (React Developer Tools) in Electron to trace and debug React applications. We
have briefly familiarized ourselves with the PhotonKit frontend framework and created
React components for the chat application using PhotonKit styles and markup. Finally, we
have bundled our components together and rendered the application in Electron.

44
Creating a Chat System with

Electron and React –
Enhancement, Testing, and

Delivery
We finished the last chapter with a static prototype. We learned about React, composed the
components, but didn't provide them with any state. Now, we will start binding the state of
the application window to the Header component. As the state concept clarified, we will
move to the chat services. After getting a brief introduction to the WebSockets technology,
we will implement both the server and client. We will bind the service events to the
application state. Finally, we will have a fully working chat. We won't stop on it, but will
take care of the technical debt. So, we will set up the Jest testing framework and unit-test
both the stateless and stateful components. Afterward, we will package the application and
publish releases though a basic HTTP server. We will extend the application to update
when new releases are available.

Revitalizing the title bar
Until now, our title bar was not really useful. Thanks to the Photon framework, we can
already use it as a handle to drag and drop the window across the viewport, yet we are
missing windowing actions such as close, maximize, and restore window.

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[129]

Let's implement them:

We do not go with methods, with properties keeping anonymous
functions bound to the object scope. This trick is possible, thanks to

, which we included in
the manifest and Webpack configuration in , Creating a Chat
System with Electron and React – Planning, Design, and Development.

We extended the component with handlers to close the window, to maximize, and then to
restore to its original size. We already have a button in JSX, so we just need to
subscribe to the corresponding handler method for the event using the
attribute:

The and buttons, though, are rendered in HTML conditionally,
depending on the current window state. Since we will utilize the state, let's define it:

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[130]

The state property takes in the corresponding flag from the current window
instance. Now, we can extract this value from the state in JSX:

So, we render the button when it is true and otherwise. We also
subscribe the handlers for the events on both the buttons, but what about changing
the state after the window maximizes or restores?

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[131]

We can subscribe to the corresponding window events straight before the component is
rendered to the DOM:

When the window changes its state handler, invokes and actualizes the
component state.

Utilizing WebSockets
We have a static prototype, and now we will make it functional. Any chat requires
communication between connected clients. Usually, clients do not connect directly but
through a server. The server registers connections and forwards the messages. It's pretty
clear how to send a message from the client to server, but can we do it in the opposite
direction? In the olden days, we had to deal with long-polling techniques. That worked, but
with the overhead of HTTP, it is not really suitable when we mean a low latency
application. Luckily for us, Electron supports WebSockets. With that API, we can open a
full-duplex, bi-directional TCP connection between the client and server. WebSockets
provides higher speed and efficiency as compared to HTTP. The technology brings
reduction of upto 500:1 in unnecessary HTTP traffic and 3:1 in latency
(). You can find out more about WebSockets in my book JavaScript
Unlocked (). Here, we
will get acquainted with the technology briefly, with the help of a small demo. I suggest
examining an echo server and a client. Whenever a client sends a text to the server, the
server broadcasts it on all the connected clients. So, on every page with the client loaded, we
receive the message in real time.

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[132]

Of course, we won't write a protocol implementation for the server, but go with an existing
NPM package--nodejs-websocket ():

npm i -S nodejs-websocket

Using the package API, we can quickly make our code to serve incoming messages from the
client:

Here, we instantiate an object representing the WebSockets server (). Within the
callback of the factory, we will receive connection objects. We subscribe to
every connection for the and events. The first one happens when a data
frame is sent from the client to the server. We simply forward it to every available
connection. The second event is fired when something goes wrong, so we report the error.
Finally, we start the server in the given port and host, for example, I set port . If this
port is taken in your environment by any other program, just change the value of the
constant.

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[133]

We can compose the client of this simplified chat as a single page application. So create the
following HTML:

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[134]

In the HTML, we placed a form with input control and output container. The intent is to
send input value on form, submit it to the server, and display the server response in the
output element.

In the JavaScript, we store a reference to the acting nodes and create an instance of the
WebSockets client. We subscribe for the , , and client events. The first
two basically report on what is happening. The last one receives events from the server. In
our case, the server sends text messages, so we can take them as . We also need to
handle the input from the client. Therefore, we subscribe for on the form element.
We use the method of the WebSockets client to dispatch the input value to the server.

To run the example, we can use the module (
) to launch a static HTTP server for our :

npm i -S http-server

Now, we can add the following commands to :

So, we can run the server as:

 npm run start:server

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[135]

and then the client as:

npm run start:client

Implementing chat services
I believe that it's more or less clear how WebSockets works now, and we can apply the API
for our chat. However, in a real application, we need something more than to echo sent
texts. Let's put the intended event scenarios on paper:

The component handles user input and sends via the client to the
server event with the entered user name in the payload
The server receives the event, adds a new user to the set, and broadcasts the

 event with the updated set
The client receives the event and passes the set to the

 component, which updates the participant's list

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[136]

The component handles user input and sends the entered
message via the client to the server as the event with username, text, and
timestamp in the payload
The server receives the event and broadcasts it to all the chat participants

As we deal with event messages, we need a unified format for sending and receiving a
single source of truth. So, we implement a message wrapper--

:

This module exposes two static methods. One transforms the given event name and
payload into a JSON string, which can be sent through WebSockets; another translates the
received string into a message object.

Now we write the server-- :

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[137]

The same as the echo server, this one subscribes to connection events to report what is
going on and exposes the and methods. To make it handle incoming
messages, we extend the callback:

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[138]

Now, when receiving a message, the server tries to call a handler method matching the
event name. For example, when it receives event, it calls :

The method accepts the event payload (the user name here) as the first parameter and the
connection reference as the second. It registers the connection in map.
So, we can now determine the associated user name and registration timestamp by a
connection. The method then broadcasts the values of the map as an array (a set of
usernames and timestamps).

However, we shall not forget to define as a map in the class
constructor:

We also add a handler method for the event:

The method extracts the username associated with the given connection from the
, extends the message payload with it, and broadcasts the derived

message.

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[139]

Now, we can write the client-- :

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[140]

The client implements the same trick with the handler methods as the server, but this time,
we make the method return a Promise. Thus, we can adjust the execution flow if
the client failed to connect the server. We have two handlers: and

. Both of them simply bypass the received message to the application. Since the
 class extends , we can use to fire an event and any

subscribed application module will be able to catch it. Besides, the client exposes two public
methods: and . One () will be consumed by the component to
register the provided username on the server, and the other () is called from the

 component to communicate the submitted text to the server. Both the
methods rely on the private method, which actually dispatches messages.

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[141]

Electron comprises of the Node.js runtime and therefore allows us to run the server. So, to
make it simpler, we will include the server into the application. For that, we modify the
server code again:

Now it runs the supplied to establish a connection with our WebSockets
server. If it's the very first instance of the application running, no server is yet available.
Therefore, the client fails to connect and execution flow jumps into the catch callback. There,
we start the server and reconnect the client.

Bringing functionality to the components
Now when we have the server and client services, we can enable them in the application.
The most suitable place is the container-- :

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[142]

Do you remember that we rendered either the or component
conditionally in the static prototype?:

Back then, we hardcoded , yet it belongs to the component state. So, we can initialize
the state in the class constructor like this:

Well, is empty by default and we, therefore, show the component. We can
type in a new name there. As it's submitted, we need to somehow change the state in the
parent component. We achieve it with a technique known as Lifting state up. We declare a
handler for the change event in the container and pass it to the
component with the props:

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[143]

So, we extract from the state and use it in the expression. Initially, is empty and
therefore the component is rendered. We declare the handler and
pass it to the component with the props. The handler receives the submitted
name, registers the new connection on the server (), and changes the
component state. So, the component replaces .

Now, we will edit the component-- :

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[144]

Whenever a component expects any props, it usually means that we have to apply the
 and static methods. These belong to the API

and are automatically called during component initialization. The first one sets a default
value for the props and the second validates them. In HTML, we subscribe to the
handler for the form event. In the handler, we need to access an input value. With
the JSX attribute, we added the instance as a reference to the input element. So, from
the handler, we can obtain the input value as .

Well, now the user can register in the chat, and we need to show the chat UI--
:

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[145]

This one is a composite component that lays out the and
children components and forwards to them.

The first one is meant to display the list of participants--
:

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[146]

Here, we need some construction work. First, we define the state, which includes the
participant list from the props. We also subscribe to the client event and
update the state every time the server sends an updated list. When rendering the list, we
also show participant registration time, such as joined 5 minutes ago. For that, we use a
third-party component, , provided by the NPM package.

Eventually, we are coming to the component--
:

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[147]

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[148]

During the construction, we subscribe to the client event and collect the received
messages in the array. We use these messages to set the component state.
In the method, we extract the message list from the state and traverse it to render
every item. The message view includes the sender's name, text, and time. The name we
output as it is. We split the text in lines and wrap them with the paragraph element. To
display time, we use the static method. This method transforms the
object into a long string (date and time) when it's older than today, and into a short string
(date) otherwise.

We also need a form for sending messages to the chat. The ideal method would be to put
the form into a separate component, but for the sake of brevity, we will keep it next to the
conversation view:

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[149]

Pretty much as in the component, we make a local reference to the text area node
and subscribe the handler for the form event. To make it user-friendly,
we set to listen to a keyboard event on the text area. When Enter is pressed
during typing, we submit the form. So, we have to now add new handlers to the component
class:

When the form is submitted either by pressing the OK button or Enter, we pass the message
to the server via the method of the client and reset the form.

I don't know about you, but I have the itch to run the application and see it in action. We
have two options here. We can just start multiple instances from the same machine, register
each one with a different name, and start chatting:

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[150]

Alternatively, we set a public IP in the container to make the chat available across the
network.

Writing unit-tests
In real life, we cover application functionality with unit-tests. When it comes to React, the
Jest testing framework is the first to pop up in one's mind. The framework is developed by
Facebook as well as React. Jest is not aimed at React only; you can test any JavaScript. Just
to see how it works, we can set up a new project:

npm init -y

Install Jest by running the following command:

npm i -D jest

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[151]

Edit the section in :

Place the example unit for testing:

This is a simple pure function that double any given number. What we need to do now is to
just place a JavaScript file of a name matching the pattern--

:

If you are familiar with Mocha or, better, Jasmine, you will have no problem reading this
test suite. We describe an aspect (), declare our expectations (), and assert
that the result produced by the unit under test meets the requirements ().
Basically, the syntax doesn't differ from the one we used in , Creating a File
Explorer with NW.js – Enhancement and Delivery.

By running , we get the following report:

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[152]

What makes Jest preferable in our case is that it's really close to the React philosophy and
incorporates specific features for testing a React application. For example, Jest comprises of
the assertion method. So, we can build a component in the virtual
DOM, and make and save the snapshot of the element. Then, after refactoring, we run the
tests. Jest takes actual snapshots of the modified components and compares them to the
stored ones. That's a common approach for regression tests. Before putting it into practice,
we have to set up Jest for our environment. We specified our bundling configuration in

. Jest won't consider this file. We have to compile the source for Jest
separately, and we can do it with :

npm i -D babel-jest

This plugin takes the code transformation instructions from the Babel runtime config--
:

Here, we use preset env (), which
automatically determines and loads the plugins required by the target environment
(Node.js 7). Do not forget to install the preset:

npm i -D babel-preset-env

We also apply the and
plugins to get access to rest, spread, and ES Class Fields and Static Properties syntax,
respectively (we have already used these plugins for Webpack configuration in ,
Creating a Chat System with Electron and React – Planning, Design, and Development).

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[153]

As we did in the test example, we will modify the manifest--
:

This time, we also explicitly point Jest to our source directory, .

As I explained earlier, we will produce snapshots of React components for further
assertions. That can be achieved with the package:

npm i -D react-test-renderer

Now we can write our first component regression test--
:

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[154]

Yeah, it turned out that easy. We create an element with and obtain
static data representation by calling the method. When we first run the test (

), it creates the directory with the snapshot next to the test file. Every
subsequent time, Jest compares the stored snapshots to the actual ones.

If you want to reset snapshots, just run .

Testing a stateful component is similar--
:

We use the method of the created element to access the component instance.
Thus, we can call the methods of the instance that set the concrete state. Here, we pass the
fixture list of participants directly to the handler. The component
renders the list, and we make a snapshot.

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[155]

Regression tests are good to check whether the component wasn't broken during
refactoring, but they do not guarantee that the component behaved as intended in the first
place. React provides an API via the module
(), which we can use to assert
that the component really renders everything we expect from it. With third-party package
enzyme, we can do even more (). To get
an idea about it, we add a test in the suite--

:

So, we assume that the component renders an HTML footer element (
). We also check whether the footer contains the project name from the

manifest:

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[156]

Packaging and distribution
When we worked with File Explorer and NW.js, we used the tool for
packaging our application. The Electron has an even more sophisticated tool--electron-
builder (). Actually, it builds
an application installer. The range of target package formats electron-builder supports is
impressive. Then, why not try packaging our application? First, we install the tool:

npm i -D electron-builder

We add a new script to the manifest-- :

We also set an arbitrary ID for the application in field build:

We definitely want to provide the application with an icon, so we create the
subdirectory and place their for macOS, for Windows there. Icons for
Linux will be extracted from . Alternatively, you can place icons in

 named after their sizes-- .

In fact, we have not yet granted our application window with an icon. To fix it, we modify
our main process script-- :

Everything seems ready, so we can run the following:

npm run dist

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[157]

As the process completes, we can find the generated package in the default format in the
newly created folder:

Ubuntu:
 Windows:
 MacOS:

Of course, we can aim for a specific target format:

build -l deb
build -w nsis-web
build -m pkg

Note that the diverse package format may require additional metadata in the manifest
(). For instance,
packaging in requires both the and fields filled in.

Deployment and updates
Built-in capacities for auto updates is one of Electron's most prominent advantages over
NW.js. Electron's module () utilizes the Squirrel
framework (), which makes silent possible. It works nicely in
conjunction with the existing solution for multiplatform release servers; in particular, one
can run it with Nuts () using GitHub as a backend.
We can also quickly set up a fully-featured node server based on

 (), which includes
release management UI.

Electron-updater doesn't support Linux. The project maintainers
recommend using the distribution's package manager to update the
application.

For the sake of brevity, we will walk through a simplified autoupdate approach that doesn't
require a real release server, but only requires access to static releases via HTTP.

We start by installing the package:

npm i -S electron-updater

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[158]

Now, we add to the manifest's field--publish property:

Here, we state that our folder will be available publicly on , and we
go on with the provider. Alternatively, the provider can be set to Bintray
() or GitHub.

We modify our main process script to take advantage of the API--
:

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[159]

Basically, we subscribe for the events and report them to the renderer script
using the function. When is fired, we send the

 event to the renderer. The renderer on this event supposedly reports to the
user about a newly downloaded version and asks whether it would be convenient to restart
the application. When confirmed, the renderer sends the event. From the main
process, we subscribe to it using (). So, when is
fired, restarts the application.

Note that won't be available after packaging, so we have to remove it
from the main process:

Now, we make a few changes to the renderer script-- :

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[160]

In HTML, we add the element with ID , which will print out reports from
the main process. In JavaScript, we subscribe for main process events using
(). On the event, we change the content of the
element with the event payload string. When occurs, we call

 for the user opinion about a suggested restart. If the result is positive, we send the
 event to the main process.

Eventually, we edit CSS to stick our element in the left-bottom corner of the
viewport-- :

Everything is done; let's rock it! So, we first rebuild the project and release it:

npm run build
npm run dist

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[161]

We make the release available through HTTP using
():

We run the release to install the application. The application starts up as usual because no
new releases are available yet, so we release a new version:

npm version patch
npm run build
npm run dist

In the footer component, we display the application name and version
taken by the function from the manifest. Webpack retrieves it at
compilation time. So, if is modified after the application is
built, the changes do not reflect in the footer; we need to rebuild the
project.

Alternatively, we can take the name and version dynamically from the
 () object of Electron and forward it as an IPC

event to the renderer.

Now, we will start our previously installed release and this time, we will observe the
 reports in . As the new release is downloaded, we will get the

following confirmation window:

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[162]

After pressing OK, the application closes and a new window showing the installation
process pops up:

When it's done, start the updated application. Note that the footer now contains the latest
released version:

Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery

[163]

Summary
We've completed our chat application. We started this chapter by programming the actions
of the title bar. On the way, we learned how to control application window state in Electron.
We looked into the WebSockets technology on the example of simple echo server and the
accompanying client. Going deeper, we designed chat services based on WebSockets. We
bound client events to the component states. We were introduced to the Jest testing
framework and examined a generic approach to unit-testing React components. Besides, we
created regression tests for both stateless and stateful components. We packaged our
application and built an installer. We fiddled with publishing releases and made the
application update whenever a new release is available.

55
Creating a Screen Capturer

with NW.js, React, and Redux –
Planning, Design, and

Development
In this chapter, we are starting a new application—screen capturer. With this tool, will be
able to take screenshots and record screencasts. We will build the application using the
React components of the Material UI toolkit, which implements Google's Material Design
specification. We already gained some experience with React while working on the chat
example. Now, we are taking a step further towards scalable and highly maintainable
application development. We are going to have an introduction to one of the hottest
libraries of the time that called Redux, which manages the application state.

At the end of the chapter, we will have a prototype, which already responds to user actions,
but misses the service to capture display input and save it in a file.

Application blueprint
This time, we will develop a screen capturer, a little tool capable of taking screenshots and
recording screencasts.

Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and Development

[165]

The core idea can be expressed with the following user stories:

As a user, I can take a screenshot and save it as a file
As a user, I can start recording a screencast
As a user, I can start recording the screencast and save it as file

Additionally, I expect a notification to appear when a screenshot or screencast file is saved. I
also would like to have the application presented in the system notification area (Tray) and
to respond to specified global hot-keys. With a help of WireframeSketcher (

), I illustrated my vision with the following wireframe:

Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and Development

[166]

The wireframe implies a Tabbed Document Interface (TDI) with two panels. The first one,
labeled as Screenshot, allows us to take a screenshot (photo icon) and set the filename
pattern for the output file. The second panel (Animation) looks pretty much the same,
except the action button is intended to start screencast recording. As soon as a user hits the
button, it gets replaced with the stop recording button and vice versa.

Setting up the development environment
We will create this application with NW.js. As you may remember from , Creating
a File Explorer with NW.js - Planning, Designing, and Development and , Creating a
File Explorer with NW.js – Enhancement and Delivery, NW.js looks up the manifest file for the
start page link and application window meta information:

This time, we do not need a big window. We go with and allow shrinking the
window size down to . We set the window to open at the center of the screen
without the frame and built-in windowing controls.

When we were setting up NW.js in the first two chapters, we had just a few dependencies.
Now, we are going to take advantage of React and, therefore, we need the corresponding
packages:

npm i -S react
npm i -S react-dom

Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and Development

[167]

As for dev dependencies, obviously, we need NW.js itself:

npm -i -D nw

Same as for the chat application that is also based on React, we will use Babel compiler and
Webpack bundler. So, it gives us the following:

npm -i -D webpack
npm -i -D babel-cli
npm -i -D babel-core
npm -i -D babel-loader

As we remember Babel by itself is a platform, we need to specify what exact preset it
applies to compile our sources. We already worked with these two:

npm -i -D babel-preset-es2017
npm -i -D babel-preset-react

Now, we extend the list with the preset
():

npm -i -D babel-preset-stage-3

This plugin set includes all the features of the so-called Stage 3 proposal for the EcmaScript
specification. In particular, it comprised of spread/rest operators on objects, which unlocks
the most expressive syntax for the object composition.

In addition, we will apply two plugins not included in Stage 3:

npm -i -D babel-plugin-transform-class-properties
npm -i -D babel-plugin-transform-decorators-legacy

We are already familiar with the first one (ES Class Fields and Static
Properties—). The second
allows us to use decorators ().

Since everything else is ready, we will extend the manifest file with automation scripts:

Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and Development

[168]

These targets have already been used while developing the chat application. The first one
fires up the application. The second compiles and bundles sources. And the third one runs
continuously and builds the project every time any of the source files change.

For bundling, we have to configure Webpack:

So Webpack will start bundling ES6 modules recursively with . It will place
the resulting JavaScript in . On the way, any file requested for
export will be compiled with Babel according to the configured presets and plugins.

Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and Development

[169]

Static prototype
The chat application we styled using CSS is provided by the Photon framework. This time,
we are going to use ready-made React components of the Material-UI toolkit (

). What we get as developers is reusable units confronting Google Material
Design guidelines (). It ensures a good look and feel as
well as providing a unified experience on different platforms and device sizes. We can
install Material-UI with :

npm i -S material-ui

According to Google Material Design requirements, the application shall support different
devices, including mobile, where we need to handle specialized events, such as .
Currently, React does not support them from the box; one has to use a plugin:

npm i -S react-tap-event-plugin

We do not intend to run our application on a mobile, but without the plugin, we are going
to have warnings.

Now, when we are done with preparations, we can start scaffolding, as follows:

We add our startup HTML:1.

Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and Development

[170]

Here, in the element, we link to three external stylesheets. The first one
()
unlocks Material Icons (). The second
() brings the
Roboto font that is extensively used in Material Design. The last one
() is our customization CSS. In the body, we set the

 container for the application. I decided, instead of a custom element for
readability, we could use an ordinary instead. At the end, we load the
JavaScript () generated by Webpack according to our
configuration.

We add the custom styles that we have already referred in :2.

We create the entry point script:3.

Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and Development

[171]

Here, we import the container component and render it into the element of the
DOM. The component itself will look as follows:

At this point, we wrap the application pane () with the Material UI theme provider.
With the function imported from the Material UI package, we describe the
theme and pass the derived configuration to the provider. As mentioned previously, we
have to apply to enable the custom events in React that are used
by the framework.

Now is the time to add presentational components. We start with the main layout:

Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and Development

[172]

This component comprises the title bar, two tabs (and), and
conditionally, either the panel or . For rendering the tab
menu, we apply the Material UI container and the component for child items. We
also use the Material UI component to render Material Design icons. We assign
icons declared at the beginning of the render method to corresponding tabs by using props:

Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and Development

[173]

We implement the title bar with the Material UI component. Like in the previous
example, we preliminarily define icons (this time, by using the component)
and pass them to with props. We set inline handlers for the click
event. The first one hides the window and the second closes the application. What is more,
we set a custom CSS class to , because we are going to use this area as a
window handle for drag and drop. So, we extend our custom style sheet:

Now, we need a component representing tab panels. We start with :

Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and Development

[174]

Here, we use for the Take a screenshot action. We make it extra large by
passing it with props custom styling (). In addition, we apply the

 component to render text input in the style of Material Design.

The second tab panel will be quite similar:

Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and Development

[175]

The only difference it makes here is the conditional rendering of either the
 button or .

And that is pretty much everything for the static prototype. We just need to bundle the
application:

npm run build

And fire it up:

npm start

Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and Development

[176]

You will get the following output:

Comprehending redux
We learned to manage the component state while working on the chat application. It was
quite sufficient for that small example. However, as the application grows larger, you may
notice that multiple components tend to share the state. We know how to lift the state up.
But which exact component then shall manage the state? Where does the state belong? We
can avoid this ambiguity by drawing on Redux, a JavaScript library known as a predictable
state container. Redux implies an application-wide state tree. When we need to set the state
for a component, we update the corresponding node in the global state tree. All the
subscribed modules immediately receive the updated state tree. Thus, we can always easily
find out what is going on with the application by checking the state tree. We can save and
restore the entire application state at will. Just imagine, with a little effort, we can
implement time traveling through application state history.

I presume you are probably a bit confused now. The approach, if you have no experience
with it or its predecessor Flux, may look strange. In fact, it's surprisingly easy to grasp when
you start working with it. So, let's jump in.

Redux has three fundamental principles:

Everything that happens within the application is represented by a state.1.
The state is read-only.2.
State mutations are made with pure functions that take the previous state,3.
dispatch action, and return the next state.

Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and Development

[177]

We receive new states by dispatching actions. An action is a plain object with the only
mandatory field type that accepts a string. We are allowed to set as many arbitrary fields as
we wish for the payload:

The preceding figure depicts the following flow:

We have the store in a particular state; let's say A.1.
We dispatch an action (created by a pure function, called Action Creator).2.
That invokes the Reducer function with arguments: state object (representing3.
state A) and the dispatched action object.

Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and Development

[178]

The Reducer clones the supplied state object and modifies the clone object4.
according to the scenario defined for the given action.
The Reducer returns the object representing the new store, State B.5.
Any component connected to the store receives the new state and calls the6.

 method to reflect the state change in the view.

For example, in our application, we are going to have tabs. When a user clicks on all of
them, the corresponding panel is supposed to show up. So, we need to represent the current

 in the state. We can do it as follows:

However, we dispatch actions not directly, but via a function, which is called
:

The function takes zero or more input arguments and produces the action object.

The Action indicates that something happened, but doesn't change the state. That is a task
of another function called Reducer. Reducer receives as a parameter of an object
representing the previous state and the last dispatched action object. According to the
action type and payload, it produces a new state object and returns it:

Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and Development

[179]

In the previous example, we defined the initial application state in the constant
. We make it the default function parameter ()

with the statement . It means that when nothing is passed with
the arguments, takes the value of .

Pay attention to how we get a new state object. We declare a new object literal. We are
destructuring the previous state object in it and extending it with the key-value
pair set from action payload. Reducer must be a pure function, so we could not change a
value passed in the state object. You know that, with parameters, we receive as a
reference, so if we simply changed the value of the field in , the
corresponding object outside the function scope would have been impacted through the
link. We have to ensure the previous state is immutable. So, we create a new object for that.
Destructuring is a considerably new approach. If you do not feel comfortable with it, you
can go with :

For our application, we will use the only reducer, but in general, we may have many. We
can use the function exported by to combine multiple reducers
so that each of them represents a separate leave of the global state tree.

We pass to function of the reducer (can be also a product of
). The function produces the store:

If we render the React application on server-side, we can expose the state
object into the JavaScript global scope (for example,

) and connect it from the client:

And now is the most exciting part. We subscribe to store events:

We will then dispatch an action:

Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and Development

[180]

While dispatching, we created an action of the type with set
to in the payload. Therefore, in the store update handler prints
the new state updated accordingly:

Introducing the application state
After this brief tour into Redux, we will apply the newly obtained knowledge in practice.
First, we will install the package:

npm i -S redux

We will also use the additional helper library
() to simplify the declaration of action creators
and reducers. By using this library, we can use the action creator functions as references
within reducers, abandoning the construction in favor of a
shorter map syntax:

npm i -S redux-act

For screen capture, we should perform the following actions:

: It receives the identifier of the selected tab
: It receives when screencast recording starts and

 when it ends
: It receives the output filename in the panel

Screenshot
: It receives a message when an input error

occurs
: It receives an output filename in the panel

Animation
: It receives a message when an input error

occurs

Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and Development

[181]

The implementation will look as follows:

Instead of the canonical syntax, we have:

We go here with a shorter one, achieved with the function of :

Another function, , exported by , makes the reducer declaration
even shorter:

Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and Development

[182]

We do not need to describe reducer conditioning with a statement like we did
during Redux's introduction:

The function does it for us:

The function takes in a map-like object, where we use action creator functions as keys (for
example,). Yeah, for dynamic object keys, we have to go
with the syntax called Computed property names at . As object
values, we use callbacks to generate the new state.

Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and Development

[183]

In this sample, we clone the old state () and change in the derived object
 property value.

If you noted, we used imports from . In that module, we are going to
encapsulate the application scope constants:

Well, we have actions and a reducer. That's the time to create the store and connect it to the
application:

We build the store using the function of . Then, we wrap the
component with provided by the package. Do not forget to install
the dependency:

npm i -S react-redux

The Provider takes in a previously created store with props and makes it available for
another function, . We will use this function in our container
component:

Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and Development

[184]

Here, we define two mapper functions that accepts as arguments. The first
 maps the stored state to the props. With the statement

, we make the store state available in the component as
. The second maps our actions to the props.

The callback receives automatically from the function bound to the
store. Together with the function of , we can use it to map a
set of actions to the props. So, we imported all the available actions as a plain object,

, and passed it to . The return is mapped to the
field, and therefore will be available within the component as .

Finally, we pass the component to a function produced by . It extends the
component, which we export upstream. This expression may look a bit confusing. Actually,
what we do here is we modify the behavior of the component without explicitly modifying
the component itself. Traditionally, in OOP languages, we used to achieve it with the
Decorator pattern (). Nowadays,
many languages have built-in capacities, such as attributes in C#, annotations in Java, and
decorators in Python. ECMAScript also has a proposal,

, for decorators. Thus, by using the
declarative syntax, we can modify the shape of a class or a method without touching its
code. The plugin , which we used in our
Webpack configuration unlocks this feature to us. So, we can already use it for connecting
the component to the store:

Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and Development

[185]

From the container, we render the component and pass to it all the props of the
container (by destructuring the parent props). So, receives the
mapped state and actions in the props. We can use the following:

Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and Development

[186]

As you remember, this component serves the tab menu. We subscribe here for the click on
tab events. We do not subscribe to the handler directly, but a function, ,
bound to the instance scope that produces the intended handler according to the passed-in
tab key. The constructed handler receives the key with the closure and passes it to the

 action creator extracted from . The action gets
dispatched and the global state changes. From the component's perspective, it is like calling

, which causes the component to update. The field extracted from
 changes its value respectively and the component renders the panel

matching the key passed with .

As for the panel, we can already connect the filename form to the state:

Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and Development

[187]

Here, we subscribe the handler for the event on
. So, if the user types in it invokes and validates the

input. If the current value is less than six characters in length or does not end with , it
is considered as invalid. So, we use the action creator
extracted from to set a value for the error message. As soon as it is
done, the field of the state changes as well as the
property of the component, and the error message shows up. If the filename is
valid, we dispatch the action to reset the error message. We
change the screenshot filename in the state tree by calling the action creator

.

Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and Development

[188]

If you have noticed, we encapsulated the custom style in the constants
module, so it could be shared between both panels. But we have to add the new constant to
the module:

The second panel, in addition to form validation, also changes the state field :

Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and Development

[189]

We subscribe the handlers for click events on both the Start recording and Stop recording
buttons. When a user hits the first one, the handler invokes the action
creator, , which sets the state field to . It causes the
component to update. According to the new state, it replaces the Start recording button
with the Stop recording one. And vice versa, if Stop recording is clicked in the

 handler, we call to set the state property to
. The component updates respectively.

Now, we can build the application and run it:

npm run build
npm start

Observe that when we are switching tabs, editing file names, or toggling start/stop
recording, the application responds as we intend.

Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and Development

[190]

Summary
In this chapter, we familiarized ourselves with the basics of Google's Material Design. We
built the static prototype from ready-made React components of the Material-UI set. We
had an introduction into the Redux state container. We defined our application state tree
and set state mutators. We created the global state store and connected it to the container
component. We passed exposed action creators and state tree trunk into presentation
components with the props. We examined shorter action/reducer declaration syntaxes
provided by the library. We implemented it by using Redux state machine
actions, such as tabbed navigation, recording toggle, and form validation.

66
Creating a Screen Capturer
with NW.js: Enhancement,

Tooling, and Testing
In , Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and
Development, we applied the Redux store to manage the application state. Now, we are
going to get a look at how to use middleware for tooling Redux and how to unit-test Redux.

The main goal of this chapter though is to eventually teach our Screen Capturer to take
screenshots and record screencasts. For that, you will learn how to use WebRTC APIs to
capture and record a media stream. We will examine generating a still frame image from
the stream by using canvas. We will put in practice the Notification API to inform the user
about actions performed regardless of what window is in focus. We will add a menu to the
system tray and bind it with the application state. We will make capturing action available
via global keyboard shortcuts.

Tooling Redux
In , Creating a Screen Capturer with NW.js, React and Redux Planning, Design and
Development, you have learned the essentials of the Redux state container. We built a
functional prototype using Redux. However, when building your own application, you
may need to know when and what is happening to the state tree exactly.

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

[192]

Fortunately, Redux accepts middleware modules to deal with cross-cutting concerns. The
concept is pretty similar to the one of the Express framework. We can extend Redux by
hooking third-party modules on the event when an action gets dispatched but hasn't yet
reached the reducers. It doesn't make much sense to write a custom logger as many are
already available (). For example, for tracing changes in the state
tree, we can use the module that reports only the state diffs, which
makes it much easier to read. So, we will install the package (

) and add a few lines to the entry script:

Here, we export from and pass it in the
function of the module to create a store enhancer. The store enhancer applies a given
middleware to the method of the store. With the function of , we
can combine multiple enhancers. We pass the derivative as the second argument to the

 function.

Now, we can build the project and start it up. We play a bit with the UI and take a look in
DevTools. The JavaScript console panel will output the state diffs we caused:

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

[193]

Though the redux-diff-logger middleware we receive reports in the JavaScript console of
DevTools as we perform any action causing state change. For example, we modified
screenshot filename template and that immediately reflected in the console. In fact we
received a whole new object for the state tree, but redux-diff-logger is smart enough to
show us only what really interested in - the diff of the state.

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

[194]

Redux DevTools
Logging reports is already something, but it would be more useful if we could get a tool like

 to interact with the state. Third-party package brings in an
extensible environment, which supports state live-editing and time traveling. We will
examine it in conjunction with two additional modules,
and . The first allows us to inspect the state and time
travel. The second is a wrapper that docks the Redux DevTools UI to window edges when
we press the corresponding hot-key. To see it in action, we create a new component out of
custom describing DevTools:

We use the function to create the component. It takes in JSX, where we
configure visibility and the position of React DevTools UI through the props of

 and color theme in .

The derived component exposes the method instrument, which returns as a store enhancer.
So, we can pass it to the compose function:

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

[195]

In the component itself, we have to add it to the DOM:

Now, when we run the application, we can see the dock. We can press Ctrl + Q to change its
position and Ctrl + H to hide or to show it:

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

[196]

Unit-testing Redux
We have already fiddled with the Jest testing framework in , Chat System with
Electron and React: Enhancement, Testing, and Delivery (Writing Unit-tests section). Redux
introduces new concepts, such as actions and reducers. Now, we are going to unit-test
them.

As you may remember, to run Jest, we need to configure Babel:

Again, with preset, we target Babel on Node.js 7 and enable the extra plugins we used
in the webpack configuration.

Testing action creator
Actually, that's quite simple with action creators because they are pure functions. We pass
in an input according to the function interface and verify the output:

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

[197]

We have written a test for the function. We assert the fact that the
function produces an action object with in the payload. As mentioned
in the previous chapter, any action is supposed to have a mandatory property . When
we omit the description while calling the function of the
module, the derived action creator will produce an action with dynamically generated
identifiers, which is hardly testable. However, we give it a string as the first argument, for
example, :

Pretty much the same way we can test every action creator in our current application.

Testing reducers
Reducers, as well as action creators, are pure functions. They accept the last state tree object
and the dispatched action in parameters and produce a new state tree object. So, when
testing a reducer, we are checking whether a given action modifies the state as intended:

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

[198]

For the very first time, Redux calls our reducer with the state. What we expect
from the reducer is to take a predefined object as the default state. So, if we call the function
with no arguments, it is supposed to receive at entry point the default state and return it
without modifications as no action was given.

On the other hand, we can import an action creator:

Create an action and pass it to the reducer:

Thus, we test that the reducer produces a new state, changed in accordance with the given
action. An action is created by calling is supposed to set the
state object property to true. That is what we assert in the test:

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

[199]

Taking a screenshot
The previously created static prototype may look fancy, but is not of much use. We need a
service capable of taking screenshots and recording screencasts.

If it was about a screenshot of the application window, we would simply use the API on
NW.js:

But we need a screenshot of the screen and, therefore, we have to get access to display
input. W3C includes a specification draft, "Media Capture and Streams"
(), which describes an API to capture displayed media
(). Unfortunately, at the time of writing, it's not yet
supported in NW.js or, to be honest, by any browser. However, we can still use

, which streams the desktop input. This API was once a part of
technology known as WebRTC (), designed for real-time video, audio,
and data communication.

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

[200]

Yet, currently, it is removed from the specification, but still available in both NW.js and
Electron. It seems like we don't really have a choice, so we go with it.

 takes in the so-called object describing
what we want to capture and returns a promise. In our case, the constraints object may look
as follows:

We disable audio recording, set boundaries for video (determines a
suitable size based on your display resolution. When the resolution does not fit the range it
causes), and describe the media source. But we need a valid
media stream ID. That we can obtain, for example, from the NW.js API:

When combining all together, we get the following service:

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

[201]

When running it, we get a dialog prompting us to choose a media source:

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

[202]

I do not really like this UX. I would rather make it detect desktop media. We achieve that
with the following method:

We use of the NW.js API for detecting available media devices,
rejecting an app window (the type), and obtaining the media stream ID with the
method . Now, we replace the of the NW.js API
with our custom method, :

Well we manage to receive the stream. We have to direct it somewhere. We can create a
hidden and use it as a video stream receiver. We encapsulate this
functionality in a separate module:

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

[203]

During construction, the class creates a new DIV container and video element in it. The
container gets attached to the DOM. We also need to support the new elements with CSS:

Basically, we move the container out of view. So, the video will be streamed into a hidden
. The task is now to capture a still frame and convert it into an image.

That we can do with the following trick:

We create a canvas context matching the video size. By using the context method
, we draw an image from the video stream. Finally, we convert canvas to Data

URI and obtain the Base64-encoded image by striping the prefix.

We are going to inject our module instance in the service as a dependency.
For that, we need to modify the constructor:

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

[204]

We also have to forward the media stream into :

We also add a method for saving screenshots:

Now, when this method is called in a component, the image gets saved silently. To tell the
truth, it's not very user-friendly. A user presses the button and receives no information
about whether the image really is saved or not. We can improve user experience by
showing a desktop notification:

Now, when the newly created screenshot is saved, the corresponding message gets
displayed at the system level. So, even if the application window is hidden (for example, we
use system tray or a shortcut), the user still receives a notification:

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

[205]

Recording a screencast
In fact, while building the service for taking screenshots, we have done most of the work for
screencast recording. We already have the object delivered by

. We just need a way to define the start and end of recording and
save the collected frames in a video file. That is where we can benefit from the

 Recording API, which captures the data produced by or
 (for example,) so that we can save it. So, we modify the

service again:

After receiving , we use it to make an instance of . We
subscribe for the event on the instance. The handler accepts a Blob (a file-
like object representing a frame of the stream). To make a video, we need a sequence of the
frames. So, we push every received Blob into the chunks array. We also subscribe a handler
for the stop event, which creates a new Blob of the type from the collected chunks.
Thus, we have a Blob representing the screencast, but we can't just save it in a file.

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

[206]

For a stream of binary data, Node.js will expect from us an instance of the Buffer class. We
use the package to convert Blob to Buffer.

In this code, we rely on two events, and . The first one gets fired
when we start the recorder and the second when we stop it. These actions we make public:

When the method is called, the instance of starts recording and,
on the contrary, with the method, it ceases the process. In addition, we define

 callback that will be called when recording stops
() . The callback () receives with the

 parameter the binary stream of the recorded screencast and saves it with the
 method of the core module. Similar to a screenshot, on saving a

screencast, we create a desktop notification to inform the user about the performed action.

The service is almost ready. But as you can remember from our wireframes, the Screen
Capturer accepts a template for the filename, such as or

, where is a placeholder for the file index. Therefore, I would like
to encapsulate filesystem operations in the dedicated class, , where we can process the
template as needed:

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

[207]

This class has the static method , which returns an array of all the files of
a given type (extension) from the working directory. Before saving a file in the
method, we get the list of the earlier stored files and calculate the value for as

. Thus, the very first screenshot will be saved under the name
, the second as , and so on.

The instance we inject in the service:

We will instantiate the service in the entry script:

We import the class and the dependencies. While constructing , we
pass it in the instances of and . The derived instance of we pass with
the props to the component.

So, the instance of the service arrives into the component and we can use it
for taking a screenshot:

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

[208]

Similarly, in , we apply the methods record and stop of the instance from the
corresponding handlers:

Now, after building the application, we can use it to take a screenshot and record
screencasts:

From our image, we can observe that the buttons to take screenshots and record screencasts
are parts of the window UI. However, we also need to provide functionality for hiding a
window. So how do we reach capturing actions while application is hidden? The answer is
to do with system tray.

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

[209]

Taking advantage of the system tray
In , Creating a File Explorer with NW.js – Enhancement and Delivery , we already
examined adding and managing the application menu in the system tray. Briefly, we
created menu items with , added them to the instance, and attached
the menu to . So, the boilerplate for the tray menu may look as follows:

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

[210]

For this application, we need the following menu items:

Here, and get enabled depending on the state
 property. Besides, we need the instance and state properties

 and to run the capturing action on user
request. So, we inject both dependencies in the constructor:

In addition, we defined a few instance properties. and
 will receive the latest user-defined filename templates from the state.

The property will take in the corresponding value of the state when it
changes. In order to receive state updates, we subscribe for store changes:

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

[211]

In the callback, we compare the actual value from the state with the earlier
store one in the instance property . This way, we know when
has really changed. Only then, we update the menu.

Finally, we can populate the array of menu items options in the method:

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

[212]

We use the method of the application window to quit and the method to
restore the window if it is hidden. We rely on passed in the instance for
capturing actions. We also update the state by dispatching () the

 action.

Now we instantiate the class in entry script and call it the method:

When running the application, we can see in the system notification area the Screen
Capturer menu:

Registering global keyboard shortcuts
Menu in tray is a solution, but actually, we have an option to perform capturing actions
even without opening the menu. NW.js allows us to assign global keyboard shortcuts:

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

[213]

We use to create an object representing a shortcut. With
, the shortcut is registered. We use

 to unregister the shortcut when the application closes
or reloads.

That brings us to the following service:

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

[214]

Pretty much like in the class, we inject capturer and store instances. With the first one,
we access capturing actions, and use the second to access the global state. We subscribe for
state changes to get actual values for filename templates and . The method

 creates and registers a shortcut instance based on the given key and callback,
and subscribes for the and events to unregister the shortcut. In the
method , we declare our action shortcuts. The shortcuts key we will define in
the constants module:

Now, we can also append the keys to tray menu items:

Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing

[215]

Now, when we run the application, we get the following tray menu:

We can hide the application by hitting the Hide window (left hand-side) button of the title
bar and take screenshots by pressing Shift + Alt + 4 and screencasts, with Shift + Alt + 5 and
Shift + Alt + 6 for starting and stopping recording, respectively.

Summary
We started this chapter by introducing the Redux middleware. As an example, we used

 to monitor mutations in the store. We also plugged in a collection of
tools (), enabling DevTools-like panels on a page for inspecting the store
and traveling back in time using the cancelling actions. Closing with Redux, we examined
unit-testing of action creators and reducers.

In this chapter, we created the service responsible for taking screenshots and
recording screencasts. We achieved capturing of desktop video input in by
using API. With the Canvas API, we managed to take a still frame
from the video stream and convert it into an image. For video recording, we went with the

 API. Both screenshot and screencast actions we have provided with the
corresponding desktop notifications. We implemented an application menu in the system
tray and bound it to the store. To access capturing actions even without opening the tray
menu, we registered global keyboard shortcuts.

77
Creating RSS Aggregator with

Electron, TypeScript , React,
and Redux: Planning, Design,

and Development
Wading through the previous chapters, we created an application with pure JavaScript,
React and React + Redux. We are now coming to the optimal technology stack for large
scalable web applications--TypeScript + React + Redux. We are going to develop the RSS
Aggregator. I find it a good example to show TypeScript in action as well as to examine
asynchronous actions. Besides, you will learn to use a new component library, React MDL.
We will also extend it with custom styles written in SASS language.

Application blueprint
We develop a typical tool that aggregates syndicated content from a manageable list of
sources. If we split the requirements into user stories, we will get something like this:

As a user, I can see the list of earlier added sources
As a user, I can see the aggregated content
As a user, I can filter the content items by selecting a source in the menu

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

[217]

Let's again use WireframeSketcher () and put it on a
wireframe:

As a user, I can open the item link next to the list

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

[218]

As a user, I can add a source
As a user, I can remove a source
As a user, I can update aggregated content

Welcome to TypeScript
When working on a large scalable application, it's essential that established architecture has
been followed by all the team members. In other languages, such as Java, C++, C#, and PHP,
we can declare types and interfaces. So, no one can go with a new functionality unless it
fully satisfies the interface intended by the system architect. JavaScript has neither strict
types nor interfaces. That why, in 2012, engineers of Microsoft developed a superset of
JavaScript (ES2015) called TypeScript. This language extends JavaScript with optional static
typing and compiles back to JavaScript, so is acceptable by any browser and operating
system. It is similar to how we compile ES.Next to ECMAScript of the fifth edition with
Babel, but in addition, brings us features that are unlikely to be integrated into ECMAScript
in the foreseeable future. The language is exceptionally great and is documented at

 and provided with an excellent
specification . The language is supported by the mainstream IDEs
and code editors, and can be integrated through plugins in automation tools, such as Grunt,
Gulp, Apache Maven, Gradle, and others. Some major frameworks are considering
migrating to TypeScript, while Angular 2+ and Dojo 2 have already embraced it. Other
frameworks expose their interfaces to TypeScript through definition files.

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

[219]

Alternatively for static type checking, one can go with Flow
() by Facebook. Unlike TypeScript, Flow is no compiler,
but a checker. Basic typings in Flow are pretty similar to the ones of
TypeScript, achieved by almost the same syntax. Flow also introduces
advanced types, such as array, union, intersection, and generics, but does
it in its own ways. According to Facebook, they created Flow because
"TypeScript isn't built around bug finding as much as they wanted."

Setting up the development environment for
TypeScript
TypeScript makes alluring promises regarding one's development experience. Why not
fiddle with the code to see it in practice? First, we have to create a dedicated directory for
upcoming samples. We initialize the project by running and install

 as a dev dependency:

npm i -D typescript

In the manifest section, we add a command to compile sources with TypeScript:

We need to let TypeScript know what exactly we want from it. We will describe that in the
configuration file:

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

[220]

Here, we set the TypeScript compiler to search for sources anywhere within the project
directory except . In , we specify how we want it to treat
our sources during compilation. Field is set in , meaning TypeScript will
compile into the ES6/ES2016 syntax, which is already fully supported in all the modern
browsers. In the field , we have . Thus, TypeScript will bundle sources
into CommonJS-compliant modules that play nicely with the Node.js environment. With
the field , we choose in favor of the Node.js modules resolution style.
In the field , we determine where TypeScript will store the compiled modules. More
information about compiler options is available at .

Basic types
The development environment now seems ready, so we can try it out with an elementary
example:

We use the type annotation feature of TypeScript to set a constraint on the variable. That's
so easy; we just extend the declaration with the so-called declaration space like ,
where type can be one of the basic types (boolean, number, string, array, void, any, and a
few others), class, interface, type alias, enum, and import. Here, we applied ,
meaning title accepts only strings.

After compiling with , we can find file in the
directory with the following content:

You see it doesn't do much; it simply removes the type hinting. That's something amazing
about TypeScript - type checking happens at compilation time and disappears by runtime.
So, we benefit from TypeScript without any impact on the application's performance.

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

[221]

Well, let's do a nasty thing and set a value to the variable violating the given constraint:

On compilation, we receive an error message:

Hmm; TypeScript warns us when we do something wrong. What is even more exciting is if
your IDE supports TypeScript, you get notified on the fly while typing. I suggest to check
against the list and pick up the most suitable IDE for you if, by
chance, yours isn't there. I would recommend Alm () as a great example
of using TypeScript, React, and Redux together. However, I, myself, pulled in NetBeans (

) a decade ago and it has never disappointed me. It does not have
native TypeScript support, but one can easily get it by installing the TypeScript Editor
plugin ().

Let's play with type annotation more. We take a function and define a contract for entry and
exit points:

Actually, we state here that the function accepts two numbers and shall return a number.
Now, if we even think of giving the function any type different from number, the IDE
immediately alerts us about it:

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

[222]

Array, plain objects, and indexable types
Well, I believe, with primitive types, it's more or less clear, but what about the others, for
example, arrays? By combining basic type with , we define an array type:

Here, we declare the variable that is an array of string. We can achieve the same with
the following syntax:

Alternatively, we can do it with interface:

While declaring the interface by using the so-called index signature, we set
constraints on the type structure. It accepts numeric indexes and string values. In other
words, it's a string array. We can go further and set a constraint on the array length:

As for plain objects, we can go with an interface describing the intended shape:

On the other hand, we can set constraints inline with the object type literal:

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

[223]

If we are able to declare a value object (), we need to ensure
immutability. Fortunately, TypeScript allows us to specify that members of an object are

:

We can access a percentage, for example, red in a color of the type. But we cannot
change the RGB levels for a declared color. If we try this, we will get an error as follows:

For an object of arbitrary properties, we can use an index signature to target string keys:

Note that, in , we set for member type. By this, we allow any value types.

Function type
We can set constraints on a function by using the function type literal:

I find it quite discouraging and prefer to use interface:

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

[224]

You may now ask, what if the function has optional parameters? TypeScript makes it very
simple to define an optional parameter. You just need to append the parameter with a
question mark:

We made optional, so we can call the function both ways:

None of these violates the declared interface; so far, we give it string.

In pretty much the same way, we can define optional object members:

Class type
In other languages, we are used to considering interfaces as closely related to classes.
TypeScript brings a similar development experience. What is more, while Java and PHP
interfaces cannot contain instance properties, TypeScript has no such limitations:

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

[225]

With the advance of ES2015/2016, classes are used widely in JavaScript. Yet, TypeScript
allows us to set member accessibility. So, we declare a member as when we permit
access to it from the code consuming object instance. We use to ensure the
member will not be accessible outside its containing class. In addition, the
members are similar to , except they can be accessed in any of the derived class
instances:

As you can see, the value for is hardcoded. It would be just proper if our class could
be configured for the initial speed during initialization. Let's do the refactoring:

Here, we use another nice feature of TypeScript that I am personally excited about. It's
called parameter property. We often declare private properties and populate them from
constructor parameters. In TypeScript, we can simply prepend the parameter with an
accessibility modifier and it will result in a respectively named property taking in the value
of the parameter. So, in the previous code, using in the parameter list, we
declare the parameter and assign a passed in value to it. By using the ES6 syntax for
the default parameter, we set to zero when nothing has passed in the constructor

.

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

[226]

Abstract classes
Similar to what you might be used to in other languages, in TypeScript, we can use abstract
classes and methods. The abstract class is meant only for extending. One cannot create
instances of the abstract class. Methods defined as abstract are required for implementation
in any subclasses:

Abstract classes are quite similar to interfaces, except a class can implement multiple
interfaces, but extend only one abstract class.

Enum type
Time after time, we use constants to define a set of logically related entities. With
TypeScript, we can declare an enumerated type populated with immutable data and then
refer to the whole set by the type:

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

[227]

Here, we declare a type that accepts one of the predefined values (,
, and). The function expects the

parameter to be of the type. If you pass in any other value, TypeScript reports an
error:

Alternatively, we can use a string literal type that refers to any string value of a group:

Union and intersection types
Interesting so far, isn't it? What would you say then to it: in TypeScript, we can refer to
multiple types at once. For example, we have two interfaces and and need a
new type () that inherits from both of them. We can achieve it as easily as this:

Besides, we can do the intersection without explicitly declaring the type:

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

[228]

We can also define a union type that allows any type of a group. You know the
library, right? The function accepts for a selector parameter a number of diverse
types and returns the instance. How could it possibly be covered with an interface?

When a function returns a type depending on a passed-in type, we can declare an interface
that describes all the possible use cases:

A function implementing this interface accepts a string for the parameter. If the
value is , the function returns the element. If , then it returns the

 element.

One can find available DOM-related interfaces in the specification at
.

Generic type
The types we have just examined refer to a concrete type combination. In addition,
TypeScript supports a so-called generic type that helps reusing the once created interface in
different contexts. For example, if we want an interface for a data map, we can make it like
this:

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

[229]

But this accepts only numbers for the member values. Let's say, for string
values, we have to create a new interface, such as . Alternatively, we can
declare a generic that sets an arbitrary value type constraint when referred:

Global libraries
Yeah, TypeScript is, indeed, an impressive language when it comes to writing a new code.
But what about existing none-TypeScript libraries? For example, we are going to use React
and Redux modules. They are written in JavaScript, not in TypeScript. Luckily, mainstream
libraries are already provided with TypeScript declaration files. We can install these files
per module using npm:

npm i -D @types/react
npm i -D @types/react-dom

Now, when we try something stupid with any of these modules, we get immediately
notified about the problem:

On compiling or even while typing, you will get the error:

Fair enough; instead of the HTML element (for example,
) I passed to a string as the second parameter.

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

[230]

Yet, to be honest, not every library is provided with TypeScript declarations. For example,
in the RSS Aggregator application, I am going to use the library
() to fetch and parse RSS by a URL. As it happens,
the library has no declaration file. Fortunately, we can quickly create one:

The module exposes a class , but TypeScript doesn't know about these
modules; it is not yet declared in the TypeScript scope. So, we use ambient declaration in

 to introduce a new value in the scope. We state
the class constructor that accepts an optional flag of the type and returns the
Node.js object. We use overloading to describe two cases of function usage.
In the first, it receives a string for and expects a callback for handling the
RSS title. In the second, it takes in the event and then expects a callback to handle
the RSS entry.

Now, we can consume the newly created declaration file from the service:

Using a triple-slash directive, we include in the project. After it's done,
TypeScript validates if is used according to its interface.

Creating static prototype
I assume, at this point, we are quite enough into TypeScript to start with the application. As
with to the previous examples, first what we do is the static prototype.

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

[231]

Setting up the development environment for the
application
We have to set up our development environment for the project. So, we dedicate a directory
and put the following manifest there:

As requested by any Electron application, we set the path to our main process script in the
 field. We also define scripts commands to run Webpack for building and for

watching. We set one scripts command for running the application with Electron. Now, we
can install the dependencies. We definitely need TypeScript, as we are going to build the
application using it:

npm i -D typescript

For bundling, we will use Webpack as we did for Chat and for Screen Capturer
applications, but this time, instead of , we go with , because our
sources are in the TypeScript syntax:

npm i -D webpack
npm i -D ts-loader

We also install Electron and the accompanying modules that we already examined while
creating the Chat application:

npm i -D electron
npm i -D electron-debug
npm i -D electron-devtools-installer

Finally, we install the React declaration files:

npm i -D @types/react
npm i -D @types/react-dom

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

[232]

In order to access interfaces of Node.js, we also install the corresponding declarations:

npm i -D @types/node

Now, we can configure Webpack:

Here we set the entry script as and as
the output. We target Webpack on Electron () and enable source map
generation. Finally, we specify a rule, that makes Webpack process any / files with
the plugin.

So, if we request a file, such as or
, Webpack will compile it with TypeScript during the bundling.

We can make it more convenient using the Webpack option :

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

[233]

Here, we state that any encountered module name Webpack tries to resolve against both
 and directories. So, if we access a module like that, we will have the

following:

According to our configuration, Webpack first checks the existence of
 and then . Since we enlisted the extension

as resolvable, we can omit it from the module name:

What's left is just configuration for TypeScript:

It's pretty much the same as we created for the TypeScript introduction examples, except
that, here, we do not point the compiler to a directory, but explicitly to the entry script. We
also inform the compiler that it shall expect JSX.

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

[234]

React-MDL
Previously, while working on Screen Capturer, we examined the component library
Material UI. That's not the only implementation of material design available for React. This
time, let's try another one--React MDL (). So,
we install the library and the accompanying declarations:

npm i -S react-mdl
npm i -D @types/react-mdl

According to the documentation, we enable the library via imports:

Oh! Oh! Webpack won't be able to resolve the CSS module until we configure it
accordingly. First, we have to tell Webpack to look for
and in the directory:

Second, we add a rule to handle CSS with the plugin:

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

[235]

Well, now, when meeting , Webpack loads
the styles and embeds them into the page. But within the CSS content, there are links to a
custom fonts. We need to make Webpack load the referred font files:

Now, we have to install both the mentioned loaders:

npm i -D css-loader
npm i -D style-loader

Creating the index.html
The first thing we usually take care of in the Electron application is the main process script
that basically creates the application window. For this application, we do not introduce any
new concepts about it, so we can reuse of the Chat application.

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

[236]

The will be very simple:

Basically, we load Google's Material Icons font and declare out the bounding element
(). Of course, we have to load the generated by the Webpack/TypeScipt
JavaScript. It is located at , exactly as we configured it in

.

Next, we compose the entry script:

As you see, it's similar to what we had in the Screen Capturer static prototype, except for
importing React-MDL assets. As for TypeScript, it doesn't really require any changes in the
code. Yet, now we definitely have typed interfaces for the module we use
(), meaning if we violate a constraint,
for example, of , we get an error.

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

[237]

Creating the container component
Let's now create the component that we referred to in the entry script:

Here, we import the components and from the React-MDL library. We
use them to layout our custom components , , and . According to the
React declaration file),

 is a generic type, so we have to provide it with interfaces for the state
and props In the static prototype, we have neither
states nor props, so we can go with empty types.

Creating the TitleBar component
The next component will represent the title bar:

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

[238]

Here, we set up the look and feel using the , , and components of
React MDL and subscribe for the click event on the close icon. Furthermore, we import the

 object of the module and, by using the method, we
access the current window object. It has the method that we apply to close the
window.

Our component will contain the list of aggregated feeds. With the buttons and
, users will be able to manage the list. The button serves to update all

the feeds.

Creating the Menu component
We are going to keep the feed menu in the component of React MDL that shows up
automatically on wide screens and hides in the burger menu on smaller ones:

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

[239]

Creating the feed component
Finally, we take care of the main section where we are going display active feed content:

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

[240]

In the container, we display the list of RSS items, each wrapped with the
component of React MDL. The container is a placeholder for the item
content.

Everything is ready. We can build and start:

npm run build
npm start

The output is:

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

[241]

Adding custom styles with SASS
Seemingly, the resulting UI needs additional styling. I suggest that we code our custom
styles in SASS:

First of all, we make the top level element () always
adapt to the actually window height.

Further, we declare a variable for the fixed height of the title bar and set the layout for feed
items and item content containers:

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

[242]

Initially, the width of the feed items container () is 100%, while item content
one () is hidden (). When the parent container ()
receives the new state with the class, both the child containers shift to width
gracefully.

Finally, we layout the action buttons in the Menu component:

Well, we have introduced a new source type (SASS), so we have to adjust the Webpack
configuration:

Now, Webpack accepts module names and look for the source in . We also
have to configure Webpack to compile SASS in CSS:

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

[243]

Here, we determine that, when resolving the file, Webpack uses the
plugin to convert SASS to CSS and then and to load the
generated CSS. So, we now have a missing dependency - ; let's install it:

npm i -D sass-loader

This module relies on the compiler, so we need it also:

npm i -D node-sass

Why not to check what we get. So we build and start:

npm run build
npm start

The application looks better now:

Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development

[244]

Summary
In this chapter, we dived into TypeScript. We examined basic types in variable declarations
and in parameter constraints. We fiddled with interfaces for arrays and plain objects. You
learned to interface functions and classes. We took note of abstraction features, such as
member accessibility modifiers, parameter property, abstract classes, and methods. You
learned to handle group entities with the enum type and string literals. We examined the
reuse of interfaces with generic type. We have also seen how to install TypeScript
declarations for global libraries and how to write our own when none is available. We
started to work on the application. So, we set up Webpack to find and process the /
modules as well as to load CSS and web fonts. We used components of the React MDL
library to create the UI. We extended the Webpack configuration with the SASS loader to
process our custom styles. We ended up with a working static prototype.

88
Creating RSS Aggregator with

Electron, TypeScript, React,
and Redux: Development

In the previous chapter, we embraced TypeScript and came up with a static prototype.
Now, we are about unleash the try power of the language. We are going to write
application services and cover them with interfaces. We will describe actions and Reducers.
On the way, we will examine the creation of Promise-based asynchronous actions and
optimistic updates with the and modules. We will
connect the store to the application and bring the intended functionality to the components.
We will also create a simple router and bind it to the store.

Creating a service to fetch RSS
In a nutshell, our application is about reading RSS feeds. So, it would be the right thing to
start with the service, which fetches the feed by a given URL and parses it into a structure
that we could attach to the applications state. I suggest retrieving the feed XML with the

 () module and parsing it using the
 module (). Let's do it first in plain

JavaScript. So, we need to install both the packages:

npm i -S feedme
npm i -S request

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[246]

We are going to have a function that uses to fetch feed contents though
HTTP(s). This function will accept two arguments: feed URL and a callback function written
in a thunk-like manner of Node.js:

Here, we define the feed data container as a plain object (). We obtain a Writable
Stream () from the not yet written

 function and pipe it into the Readable Stream produced by
 for the specified feed URL. Now, let's add the missing function:

Here, we get the stream as the instance and subscribe for its parsing events. On
receiving the feed title, we assign it to . On receiving every item's details, we
push them into the array. This function returns the derived parse stream and
modifies the object by the reference passed in with the arguments.

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[247]

Now, we can consume the function as follows:

Despite the fact that, by default, the Node.js core modules still imply long nesting of
asynchronous functions, we are quite aware of the undesirable impact known as Callback
Hell. So, we will convert the service into a Promise:

Now, it leads to a notably improved development experience:

Being a Promise, it's also available via the / syntax:

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[248]

At this point, we can jump back to TypeScript and describe the types that we have in the
code. Firstly, we expect the declared structure to implement the following interface:

But wait! The module doesn't have a declaration file. It looks like we have to
provide it with an interface too. In the previous chapter, I showed a way to introduce a
global library into the TypeScript scope by using triple-slash directives and ambient
declarations. That's not the only possible solution. We can declare the interface in a module:

In the service, we import the interface and assign the export to a constant
of type :

After rewriting our service in TypeScript, its source will look as follows:

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[249]

What is changed? We regarded the export module with an interface (
). We defined the contract for the function. It accepts

the type as input and returns . We did the same for the
service function . It expects a string and returns a Promise, which resolves in the
type.

Creating a service to manage feed menu
Well, now we can fetch RSS feeds. But the plan was to have a manageable menu of feeds. I
think, we can represent the menu in an array of items, where each item can be described
with the following interface:

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[250]

As for the service itself, let's also start with the interface:

To some degree, it's like Test-Driven development. We describe the contents of the class
without implementation to get the whole picture. Then, we populate the members one by
one:

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[251]

What is going on here? Firstly, we import the module
() that we are going to use to calculate SHA1 hash
() of a feed URL. That's an external module, which
resolves to a non-module entity and, therefore, cannot be imported using the ES6 syntax.
That's why, we go with the function. But we still want TypeScript to consider the
module declaration file (), so we declare its container as . We
also import, in the module scope, the service interface () and menu item type
(). Our constructor accepts namespace as a string. By prefixing the parameter
with an accessibility modifier, we declare the property and assign the parameter's value
to it. The instance of will keep the actual menu state in the property . Private
method stores the value of the property to . All the three ,

, and methods modify the array and synchronize with
 by using the save method. Finally, the method load updates

with the array stored in .

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[252]

Actions and Reducers
So, we have our core services and can start designing the Redux store. We can describe the
intended state mutations in a table:

Action creator Action Type State Impact

First of all, we need to populate our feed menu. For that, we are going to have a modal
window with a form to add a feed. The action creator function will be
used to toggle the visibility of the modal window.

When the form in the modal window is submitted, the component will call the
function. The function fetches the feed by the supplied URL, obtains its title, and appends
the menu with a new item. As it involves user input and network operations, we have to
cover the failure scenario. So, we introduce the function that sets a message
in the application state. When we update the menu, the corresponding service synchronizes
the change with . That means we need an action to read the menu. The
function will take care of it. Besides, it will utilize the service to fetch the
items of all the feeds in the menu in an aggregative list. What's more, we are going to
provide the option to navigate through the menu. When a user clicks on an item, the
component calls to mark the item as active and the function to
update the component with the items of the selected feed.

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[253]

When working on action creator functions, we declare the types and use them as references
from the Reducers. That means we need a module with a bunch of constants representing
action types:

Since we are here, let's also define a few configuration constants:

The first () specifies the namespace that we are going to use in
 for the menu. The second () determines how many

items we display per page. That applies for both a selected feed and aggregative one.

In , Creating a Screen Capturer with NW.js, React, and Redux: Planning, Design, and
Development, we used the third-party module to abstract the creation of actions
and Reducers. It was really handy, but it doesn't fit if you need asynchronous actions. So,
this time, we are going to use the module
() instead. Let's check what that is on a
JavaScript example. First, we create a synchronous action by calling the
function of :

So far, it looks pretty much similar to the syntax of . We can run the newly
created function:

We then get an action object with a mandatory property and a multipurpose
one:

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[254]

Now, we can make a Reducer by using the function of :

The function expects a plain object that maps handlers to actions using the
action type as a reference. Every handler callback takes in the latest state object and the
dispatched action--the same as the canonical Reducer
().

But what about asynchronous actions? For example, we are going use the services for
fetching feeds. The service returns a Promise. Thanks to , we can create an
action as simple as the following:

Isn't it beautiful? We just pass, for the handler, an asynchronous function. The action will be
dispatched as soon as the Promise of the handler resolves:

Hold on! But what if the Promise gets rejected? The module relies on
optimistic updates. In the case of failure, incoming action acquires an extra property
when we can find an error message:

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[255]

Now after considering how we are going to implement action creators and Reducers, we
can cover the store assets with interfaces. First, we declare the interface for the state:

The property is a determining if the modal window with the
form for adding a new feed is visible. The property contains the list of menu items
and is used in the component to build the menu. The property consists of RSS
items and is used to build the list in the component. The property stores
the last error message and keeps the last requested feed URL.

Next, we describe the actions:

The module exports though the declaration file type. So, we state
that the functions , , and return plain
objects that confront the type constraints. In other words, in addition to the
property, those may have and . is a generic type, so we clarify what
type is expected in payload, for example, means

.

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[256]

Asynchronous actions , , , and return
Promises. Again, we specify explicitly what type is expected when a Promise resolves.
Speaking of which, the function refers to the missing type.
Let's add it:

The function resolves with an object containing both menu items and RSS items of the
aggregative list.

It seems like we are ready to implement the store. So, we will start with actions:

First, we import , the earlier defined constants and interfaces, and both the
services such as and constructor. We create an instance of the menu in the
namespace imported from the configuration constants. Next, we add synchronous actions:

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[257]

Here, we use the pattern we examined earlier in the JavaScript example for .
The only difference is that is a generic type in the TypeScript scope, so we
have to specify what type the action creator will pass in the property and what it
expects with the first parameter. All of these functions take in a single argument. If we
needed more, we would express it as or even

.

Now, we extend with asynchronous actions:

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[258]

The function simply delegates the Promise of the service. The function
 first checks whether a given URL already exists in the menu. If , it throws an

exception. Then, the function obtains the feed from the service and adds the item into
the menu. Finally, performs a number of tasks. It reloads the menu from

. That is exactly what one may expect of the action. But I want the function
to generate the aggregative list as well. So, it collects the Promises of the service for
every feed available in the menu. It applies to resolve the collected set of
Promises. The method results in the list of feeds. We need to combine all the items in a flat
array, sort it by publication date, and limit it to the number we set in the

 constant.

Now, we start on the Reducer:

Here, we imported the function and the interface, and from
, our interfaces and constants. We also defined the default state for the

Reducer.

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[259]

Next, we create the Reducer:

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[260]

 is generic type, so we can specify the constraints for the object it
operates with. In the supplied object, we describe how every dispatched action shall modify
the state. Thus, () toggles the
property. The function (), in case of success, populates the
property from the action payload and, besides, resets and . If
the Promise was rejected, it sets with an error message. The function

 () simply sets from the action payload. The
function () updates the menu, so here, it populates the
state property with the updated list. The function () updates the

 property with just the fetched feed items. The function ()
reloads the menu and generates the aggregative list, so it updates both and (RSS)

. Finally, the function () simply saves the
selected item URL in the state.

In a large scalable application, we use multiple Reducers combined together with the
 function of . For this little application, only the Reducer will be

sufficient. Yet, I suggest, we follow the practice:

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[261]

This changes our state tree. So, the top level state object can be described now with the
following interface:

Connecting to the store
We have action creators and we have Reducers and, now, we are about to make them
available across the application. As you can remember from , Creating a Screen
Capturer with NW.js, React, and Redux: Planning, Design, and Development, the module
provides the function , which takes in combined reducers to produce the
store. The module exports the provider higher-order component that accepts
the store with the props and makes it available through across the inner
component tree. The function accepts middleware that is combined with the
compose function of . As we already discussed in this application, we need
asynchronous actions. Here, we can use the
(https://www.npmjs.com/package/redux-thunk) middleware that allows us to write action
creators, which return functions instead of plain objects. These functions take in references
to the and functions as parameters. So, we can dispatch deferred
actions. For example, we need to read the RSS feed by URL, so we reflect it on the
application state with the following action creator:

Before making asynchronous HTTP request for the feed contents, we dispatch
 and, when the request is resolved, or
 if it was rejected.

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[262]

It is all nice, but is too verbose. Just to get the data retrieved through HTTP, we write four
(!) action creators. Instead we can follow an optimistic updates approach and go with a
single action creator. That involves an additional middleware
(), which plays nicely with

:

Now, when combining all together, we come up with the following update for the entry
script:

In the container component, we need to add two functions that inform of how we
want to map state and action creators to the component props:

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[263]

Here, we have mapped the state to the props simply one to one. As we have the store
expressed as , we receive, in the props, an extra
property pointing at the actual state tree. As for the action creators, we destructure
the namespace and attach every available function as a new property to the props. So the
props of the container components can now be described with the following type:

We shall refer to the props with this type in the generic.

We pass the container component's properties downward by destructuring
. Thus, every child component receives an object of the type

with the property store:

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[264]

Personally, I find the container to be a good place for bootstrap logic. In particular, I would
like the load menu from in the start of the application. Actually, it can be
done straight after the container component is mounted:

So, we call the action creator, which is now available in the props. This
dispatches the action, the Reducer modifies the state and any component, and all the
components reflect the state change.

Consuming store from the components
If you were attentive enough, you didn't miss that, in container's JSX, we introduced a new
component . Since we have an error state (), we need to
visualize it:

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[265]

By using and related components of the React MDL library, we describe a modal
window, which shows up when is not empty. The window has a button

, which has a handler subscribed for the click event. The handler calls the
 action to reset :

We can now modify the components to display and manage the RSS menu from the
state:

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[266]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[267]

Here, we take from the property and map it to build the list of menu
items. We represent items as links with as contents and (sha1 of
URL) in . We use the static method to build the item . It
will be normally and

 when the item is an active one. We also subscribe to the
handlers for click events on the , , and (icon) buttons. The
first one calls the action with to display the modal window for
adding a feed. The second uses the action with from the
state. It also calls the action to refresh the aggregative list. The last one simply
calls the action.

Now, we have to create a component representing the modal window with the form to add
a feed:

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[268]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[269]

Similar to , we use and the related components of React MDL to
render the modal window. The window has a form and an input represented with the

 component of React MDL. We make both elements available in the instance
scope by using the attribute. We subscribe the method for the form
event. In the handler, we take the value from the input field by the reference (is
referenced as ; thus, internal input can be accessed as
according to React MDL API) and pass it to the private method . The method
calls and to update the aggregative list. The window also includes the

 button, which invokes the action with false on a click event.

That's left just to update the component:

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[270]

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[271]

Here, we map to render RSS items, while we use the static
method to sanitize item description. Every item is provided with the button that has a
subscriber . This method makes visible, the column and
changes the attribute of . This causes to load the feed item URL. Why
do we use and not iFrame? Because is the intended container for guest
contents in both Electron and NW.js (

). runs in a separate process and it doesn't have the same permission as your
page. So, it's supposed to prevent third-party pages, and scripts that are affecting and
harmful to your application.

We could not reference directly because JSX doesn't have such an element and we
had to inject it. So, we use the life-cycle method to reach it via DOM.
What is more, we subscribe to the event, which happens when the page
loaded within tries to open a new window/tab. We prevent that from happening,
but open the requested page in the external browser instead.

Chin-chin! It's a working application now. So, we can build it:

npm build

And we can run:

npm start

The output will be:

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[272]

If we hit "open" link on any of RSS items the content panel slides in and it loads the
corresponding contents into the WebView:

Creating router service
Everything is fine, except we cannot really select a feed from the menu. We have the state
property , which is already considered by the component, but we
have never used the action so far to set this state. Nonetheless, in the
component, we provided all the items with hash links. To serve browser location
navigation, we need a router. There are many implementations available as installable
modules. Yet, in this simple example, we will create our own:

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[273]

On the construction, the service takes in the store instance and assigns it to the private
property . With the method, we subscribe to the document
event, which triggers every time the changes. It happens, for example,
when we request from the address bar something like . In the handler function,
we extract SHA1 from (everything what follows symbol) and use the

 method to find the associated feed URL (we provide items with IDs in
the method of the service). As we have the URL, we dispatch the
action to set the state property. In addition, we dispatch to
fetch the selected feed.

We can now enable the service in entry script as follows:

Summary
We started this chapter by implementing the service. We used the module to
fetch feed contents. We obtained a Writable Stream from the module and
configured it to parse the input into our feed container object. We piped the parser
into the Readable Stream produced by . The module was missing the
declaration file, so we provided it with an interface.

Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development

[274]

Then, we created the service, which can be used to manage and persist the menu of
feeds. We considered actions and state structure required by the application. We applied
the module for creating actions and the Reducer. On the way, we
examined the optimistic updates approach. While creating the store, we practiced two store
enhancers and that help to deal with asynchronous actions.
We connected our existing components to the store and modified them accordingly. Besides
this, we have written two new components, both utilizing the component of React
MDL library. The first one displays an application error if it occurs. The second shows and
handles the feed adding form. Among other things, we made the component to load
the feed item URL on demand. So, you learned to use the tag for the guest
contents. What is more, we subscribed to the new-window event to force any request for
opening a new window from the WebView to open in an external browser. Finally, we
created a simple router to serve navigation in the feed menu.

Index

A
abstract classes
array type
Atom IDE
 URL
autoupdate, File Explorer
autoUpdater
 reference

B
bar
Behavior-driven Development (BDD)
Bintray
 URL
Blocks Elements Modifiers (BEM)

C
chat services
 implementing , , , ,
chat system
 application blueprint
 chat services, implementing
 creating, with Electron and React
 deploying , , ,
 DevTools extensions, enabling
 distribution
 functionality, to components , , , ,

 packaging
 static prototype
 title bar, revitalizing
 unit-tests, writing
 updates , , ,
 WebSockets, utilizing
Chromium
 URL

class type
command-line options, File Explorer ,
Computed property names
context menu, File Explorer
context menu, File Explorer with NW.js
Custom Properties
 URL

D
Decorator pattern
 reference
decorators
 reference ,
default function parameter
DevTools extensions
 enabling
 reference
DOM-related interfaces
 reference

E
ECMAScript Internationalization API
 reference
EcmaScript specification
electron-release-server
 reference
Electron
 about ,
 URL
 using , ,
 using, with React , ,
enum type
env
 reference
ES Class Fields & Static Properties
 reference

[276]

F
feedme library
 URL ,
File Explorer, with NW.js
 application blueprint
 autoupdate , , , ,
 command-line options
 context menu , ,
 creating
 functional requirements, fulfilling ,
 HTML prototype
 internationalization
 localization
 menu, system tray , ,
 native look and feel ,
 packaging
 service, writing for navigating through directories

,
 source code protection
 system clipboard
 view modules, writing
 windowing actions, handling
Flow
 URL
function type
functional requirements, File Explorer with NW.js
 arrow functions
 classes ,
 destructuring ,
 ES2015 ,
 functional requirements
 getters and setters
 scoping
 template literal

G
generic type
global keyboard shortcuts
 registering , ,
global libraries
Google Material Design guidelines
 URL
Grid Layout
 URL

H
Holy Grail Layout
HTML prototype
 about
 base rules, defining ,
 CSS variables, defining , ,
 directory list, styling
 file list, styling
 footer, styling , , ,
 header, sticking
 layouts, defining , ,
 maintainable CSS ,
 title bar, sticking
 title bar, styling
http-server module
 reference

I
index signature
indexable type
internationalization (i18n)
internationalization and localization, File Explorer

with NW.js
 about
 date format, by country ,
 multilingual support ,
intersection type
ipcMain
 reference

J
Jasmine
 URL

L
Lifting state up

M
Material Design system
 URL
Material Icons
 URL
Material-UI toolkit
 URL

[277]

N
Node Package Manager (npm) , , , , ,

,
Node.js
 download link
Nuts
 reference
NW.js
 about
 project, setting up

P
packaging, File Explorer
parameter property
Photonkit
 URL
plain object type
Pragmatic CSS styleguide
 reference
predictable state container

R
React MDL
 about
 URL
React
 about
 using , ,
Reducer
 reference
Redux DevTools
 about
 using ,
redux-act library
 URL
redux-actions module
 URL
redux-promise middleware
 URL
Redux
 about
 comprehending , , , ,
 tooling ,
 unit-testing

request module
 URL
Responsive Web Design (RWD)
router service
 creating
RSS Aggregator
 actions, using , ,
 connecting, to store , ,
 container component, creating
 custom styles, adding with SASS
 developing
 development environment, setting up
 feed component, creating
 index.html, creating
 Menu component, creating
 React-MDL
 Reducers, implementing , ,
 router service, creating
 service, creating to fetch RSS , ,
 service, creating to manage feed menu
 static prototype, creating
 store, consuming from components , ,

 TitleBar component, creating

S
SASS
 custom styles, adding for RSS Aggregator
screen capturer
 application state , , ,
 developing
 development environment, setting up ,
 global keyboard shortcuts, registering , ,

 Redux, comprehending , , , ,
 screencast, recording ,
 screenshot, creating , ,
 static prototype , ,
 system tray, implementing ,
Semantic Versioning
 URL
service, for navigating through directories
 unit testing ,
 writing
sha1 module

 reference
Sinon library
 URL
source code protection, File Explorer
Squirrel
 reference
stage-3 preset
 URL
static prototype, chat system , , , ,

Sticky positioning
system clipboard, File Explorer
 about
 graphics, transferring
 text and graphics, receiving ,
 text transferring
system tray, File Explorer
 menu
system tray
 implementing ,

T
Tabbed Document Interface (TDI)
template literals
title bar, chat system
 revitalizing , ,
TypeScript
 about
 abstract classes
 array type
 basic types
 class type
 development environment, setting up
 enum type
 function type, using
 generic type
 global libraries
 indexable type
 intersection type

 plain object type
 union type

U
Uniform Resource Identifier (URI)
union type
unit-testing, Redux
 about
 action creator, testing
 reducers, testing
unit-tests, chat system
 writing , , ,

V
value object
 reference
view modules, File Explorer with NW.js
 DirList module
 FileList module
 title bar path module
 unit testing ,
 writing
Visual Studio Code
 URL

W
WebRTC
 URL
WebSockets
 utilizing, in chat system , , ,
WebView
 about
 URL
windowing actions
 handling ,
WireframeSketcher
 URL , ,
Writable Stream
 URL

	Cover
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Creating a File Explorer with NW.js-Planning, Designing, and Development
	The application blueprint
	Setting up an NW.js project
	Node Package Manager
	An HTML prototype
	Maintainable CSS
	Defining base rules
	Defining layouts
	Defining CSS variables
	Sticking the title bar and header
	Styling the title bar
	Styling the directory list
	Styling a file list
	Styling the footer

	Fulfilling the functional requirements
	Starting with ES2015
	Scoping
	Classes
	The template literal
	Getters and setters
	Arrow functions
	Destructuring

	Handling windowing actions
	Writing a service to navigate through directories
	Unit-testing a service

	Writing view modules
	The DirList module
	Unit-testing a view module
	The FileList module
	The title bar path module

	Summary

	Chapter 2: Creating a File Explorer with NW.js – Enhancement and Delivery
	Internationalization and localization
	Date format by country
	Multilingual support

	Context menu
	System clipboard
	Transferring text
	Transferring graphics
	Receiving text and graphics

	Menu in the system tray
	Command-line options
	Native look and feel
	Source code protection
	Packaging
	Autoupdate
	Summary

	Chapter 3: Creating a Chat System with Electron and React – Planning, Designing, and Development
	Application blueprint
	Electron
	React
	Electron meets React
	Enabling DevTools extensions
	Static prototype
	Summary

	Chapter 4: Creating a Chat System with Electron and React – Enhancement, Testing, and Delivery
	Revitalizing the title bar
	Utilizing WebSockets
	Implementing chat services
	Bringing functionality to the components
	Writing unit-tests
	Packaging and distribution
	Deployment and updates
	Summary

	Chapter 5: Creating a Screen Capturer with NW.js, React, and Redux – Planning, Design, and Development
	Application blueprint
	Setting up the development environment
	Static prototype
	Comprehending redux
	Introducing the application state
	Summary

	Chapter 6: Creating a Screen Capturer with NW.js: Enhancement, Tooling, and Testing
	Tooling Redux
	Redux DevTools
	Unit-testing Redux
	Testing action creator
	Testing reducers

	Taking a screenshot
	Recording a screencast
	Taking advantage of the system tray
	Registering global keyboard shortcuts
	Summary

	Chapter 7: Creating RSS Aggregator with Electron, TypeScript , React, and Redux: Planning, Design, and Development
	Application blueprint
	Welcome to TypeScript
	Setting up the development environment for TypeScript
	Basic types
	Array, plain objects, and indexable types
	Function type
	Class type
	Abstract classes
	Enum type
	Union and intersection types
	Generic type
	Global libraries

	Creating static prototype
	Setting up the development environment for the application
	React-MDL
	Creating the index.html
	Creating the container component
	Creating the TitleBar component
	Creating the Menu component
	Creating the feed component
	Adding custom styles with SASS

	Summary

	Chapter 8: Creating RSS Aggregator with Electron, TypeScript, React, and Redux: Development
	Creating a service to fetch RSS
	Creating a service to manage feed menu
	Actions and Reducers
	Connecting to the store
	Consuming store from the components
	Creating router service
	Summary

	Index

